Virus SARS-CoV-2 trong không khí thường được phát hiện nhiều hơn ở môi trường liên quan đến trẻ em và người cao tuổi nhưng có khả năng không gây nhiễm bệnh, Na Uy, 2022

Priscilla Gomes da Silva1,2,3,4,5, Mahima Hemnani3,5,1, José Artur Teixeira Gonçalves6, Elisa Rodríguez6, Pedro A. García‐Encina6, María Säo José Nascimento7, Sofia Sousa2,4, Mette Myrmel7, João R. Mesquita1,3,5,8
1ICBAS-School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
2ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
3Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, Porto, Portugal
4LEPABE — Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
5Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
6Institute of Sustainable Processes, Valladolid University, Valladolid, Spain
7Faculty of Pharmacy, University of Porto, Porto, Portugal
8Virology Unit, Norwegian University of Life Sciences, Ås, Norway

Tóm tắt

Tóm tắtNghiên cứu này điều tra sự hiện diện của SARS-CoV-2 trong môi trường trong nhà và ngoài trời tại hai thành phố ở Na Uy trong khoảng thời gian từ tháng 4 đến tháng 5 năm 2022. Khi các biện pháp hạn chế COVID-19 được dỡ bỏ và chính phủ tập trung vào tiêm chủng, nghiên cứu này nhằm làm rõ khả năng lây truyền virus trong các tình huống khác nhau. Việc lấy mẫu không khí đã được tiến hành tại các cơ sở y tế và phi y tế, bao gồm các địa điểm mà người dân ở các độ tuổi khác nhau thường lui tới. Nghiên cứu phát hiện trong tổng cộng 31 mẫu không khí, chỉ có bốn mẫu cho thấy sự hiện diện của RNA SARS-CoV-2 thông qua RT-qPCR, và không có virus sống nào được phát hiện sau khi xử lý RNAse. Những mẫu dương tính chủ yếu liên quan đến các môi trường có trẻ em và người cao tuổi. Đáng chú ý, việc phân tích chuỗi gen đã tiết lộ các đột biến liên quan đến khả năng lây nhiễm tăng cao trong một trong các mẫu. Kết quả này nhấn mạnh tầm quan trọng của việc coi trẻ em là nguồn lây truyền virus tiềm tàng, đặc biệt là trong các môi trường có thời gian tiếp xúc lâu dài trong nhà. Khi tỷ lệ tiêm chủng gia tăng trên toàn cầu, và với việc trẻ em vẫn chiếm một phần lớn dân số chưa được tiêm chủng, nghiên cứu nhấn mạnh sự cần thiết phải tái áp dụng quy định đeo khẩu trang trong nhà và trên phương tiện giao thông công cộng nhằm giảm sự lây truyền virus. Các phát hiện này có tác động đến các chiến lược y tế công cộng để kiểm soát COVID-19, đặc biệt là khi đối mặt với các biến thể mới và khả năng lây truyền tăng trong mùa thu và mùa đông.

Từ khóa

#SARS-CoV-2 #lây truyền virus #môi trường trong nhà #trẻ em #người cao tuổi #Na Uy #COVID-19

Tài liệu tham khảo

WHO. (2020) Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 1 Jun 2021.

Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819. https://doi.org/10.1016/j.envres.2020.109819.

Tang JW, Marr LC, Li Y, Dancer SJ. Covid-19 has redefined airborne transmission. BMJ. 2021;373:n913. https://doi.org/10.1136/bmj.n913.

Meyerowitz EA, Richterman A. SARS-CoV-2 transmission and Prevention in the era of the Delta variant. Infect Dis Clin North Am. 2022;36:267–93. https://doi.org/10.1016/j.idc.2022.01.007.

Centers for Disease Control and Prevention (CDC). (2021) SARS-CoV-2 Transmission. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html#print. Accessed 30 Apr 2022.

WHO. (2021) Coronavirus disease (COVID-19): How is it transmitted? https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted. Accessed 16 Aug 2021.

Greenhalgh T, Jimenez JL, Prather KA, et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 2021;397:1603–5. https://doi.org/10.1016/S0140-6736(21)00869-2.

Bazant MZ, Bush JWM. A guideline to limit indoor airborne transmission of COVID-19. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2018995118.

da Silva PG, Gonçalves J, Nascimento MS et al. (2022a) Detection of SARS-CoV-2 in the indoor and Outdoor Areas of Urban Public Transport Systems of Three Major Cities of Portugal in 2021. Int J Environ Res Public Health 19.

Mohammadi L, Mehravaran A, Derakhshan Z, et al. Investigating the role of environmental factors on the Survival, Stability, and transmission of SARS-CoV-2, and their contribution to COVID-19 outbreak: a review. Sustainability. 2022;14:11135. https://doi.org/10.3390/su141811135.

Mao N, Zhang D, Li Y, et al. How do temperature, humidity, and air saturation state affect the COVID-19 transmission risk? Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-21766-x.

Kumar S, Singh R, Kumari N, et al. Current understanding of the influence of environmental factors on SARS-CoV-2 transmission, persistence, and infectivity. Environ Sci Pollut Res. 2021;28:6267–88. https://doi.org/10.1007/s11356-020-12165-1.

Robotto A, Quaglino P, Lembo D, et al. SARS-CoV-2 and indoor/outdoor air samples: a methodological approach to have consistent and comparable results. Environ Res. 2021;195:110847. https://doi.org/10.1016/j.envres.2021.110847.

Silva PG, Branco PTBS, Soares RRG, et al. SARS-CoV-2 air sampling: a systematic review on the methodologies for detection and infectivity. Indoor Air. 2022;32:1–31. https://doi.org/10.1111/ina.13083.

da Silva PG, Nascimento MSJ, Soares RRG, et al. Airborne spread of infectious SARS-CoV-2: moving forward using lessons from SARS-CoV and MERS-CoV. Sci Total Environ. 2021;764:142802. https://doi.org/10.1016/j.scitotenv.2020.142802.

Pourfattah F, Wang LP, Deng W, et al. Challenges in simulating and modeling the airborne virus transmission: a state-of-the-art review. Phys Fluids. 2021;33:1–22. https://doi.org/10.1063/5.0061469.

Holder J. (2022) Tracking Coronavirus Vaccinations Around the World. In: New York Times. https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html. Accessed 9 Nov 2022.

Mahase E. Covid-19: what we know about the BA.4 and BA.5 omicron variants. BMJ. 2022;378:o1969. https://doi.org/10.1136/bmj.o1969.

Norwegian Institute of Public Health (NIPH). COVID-19 Ukerapport—uke 1. 2022a. https://www.fhi.no/contentassets/8a971e7b0a3c4a06bdbf381ab52e6157/vedlegg/2022/ukerapport-uke-1-03.01---09.01.22.pdf. Accessed 15 Dec 2022.

Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10:1–8. https://doi.org/10.1038/s41598-020-69286-3.

Marti E, Ferrary-Américo M, Barardi CRM. Detection of potential infectious enteric viruses in Fresh produce by (RT)-qPCR preceded by nuclease treatment. Food Environ Virol. 2017;9:444–52. https://doi.org/10.1007/s12560-017-9300-x.

Rodríguez RA, Pepper IL, Gerba CP. Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Appl Environ Microbiol. 2009;75:297–307. https://doi.org/10.1128/AEM.01150-08.

Lee SH. A Routine Sanger sequencing target specific mutation assay for SARS-CoV-2 variants of concern and interest. Viruses. 2021;13:2386. https://doi.org/10.3390/v13122386.

Pan M, Lednicky JA, Wu CY. Collection, particle sizing and detection of airborne viruses. J Appl Microbiol. 2019;127:1596–611. https://doi.org/10.1111/jam.14278.

Brown JR, Tang JW, Pankhurst L, et al. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling. J Hosp Infect. 2015;91:278–81. https://doi.org/10.1016/j.jhin.2015.08.004.

Haig CW, Mackay WG, Walker JT, Williams C. Bioaerosol sampling: sampling mechanisms, bioefficiency and field studies. J Hosp Infect. 2016;93:242–55. https://doi.org/10.1016/j.jhin.2016.03.017.

Griffiths WD, Stewart IW, Futter SJ, et al. The development of sampling methods for the assessment of indoor bioaerosols. J Aerosol Sci. 1997;28:437–57. https://doi.org/10.1016/S0021-8502(96)00446-6.

Krames J, Büttner H. The cyclone scrubber—a high efficiency wet separator. Chem Eng Technol. 1994;17:73–80. https://doi.org/10.1002/ceat.270170202.

Lin YC, Malott RJ, Ward L, et al. Detection and quantification of infectious severe acute respiratory coronavirus-2 in diverse clinical and environmental samples. Sci Rep. 2022;12:1–19. https://doi.org/10.1038/s41598-022-09218-5.

Lednicky J, Lauzard M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis. 2020;100:476–82. https://doi.org/10.1016/j.ijid.2020.09.025.

Lednicky JA, Lauzardo M, Alam MM, et al. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild Illness. Int J Infect Dis. 2021;108:212–6. https://doi.org/10.1016/j.ijid.2021.04.063.

Santarpia JL, Herrera VL, Rivera DN, et al. The size and culturability of patient-generated SARS-CoV-2 aerosol. J Expo Sci Environ Epidemiol. 2021. https://doi.org/10.1038/s41370-021-00376-8.

Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–9. https://doi.org/10.1038/s41586-020-2196-x.

van Kampen JJA, van de Vijver DAMC, Fraaij PLA, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021;12:8–13. https://doi.org/10.1038/s41467-020-20568-4.

Bullard J, Dust K, Funk D, et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis. 2020;71:2663–6. https://doi.org/10.1093/cid/ciaa638.

Johnson TJ, Nishida RT, Sonpar AP, et al. Viral load of SARS-CoV-2 in droplets and bioaerosols directly captured during breathing, speaking and coughing. Sci Rep. 2022;12:1–13. https://doi.org/10.1038/s41598-022-07301-5.

Codony F, Dinh-Thanh M, Agustí G. Key factors for removing Bias in viability PCR-Based methods: a review. Curr Microbiol. 2020;77:682–7. https://doi.org/10.1007/s00284-019-01829-y.

Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A et al. (2021) Viability RT-PCR for SARS-CoV-2: a step forward to solve the infectivity quandary. medRxiv 2021.03.22.21253818. https://doi.org/10.1101/2021.03.22.21253818.

Chou J, Thomas PG, Randolph AG. Immunology of SARS-CoV-2 Infection in children. Nat Immunol. 2022;23:177–85. https://doi.org/10.1038/s41590-021-01123-9.

World Health Organization (WHO). Interim statement on COVID-19 vaccination for children. 2022a. https://www.who.int/news/item/11-08-2022-interim-statement-on-covid-19-vaccination-for-children. Accessed 10 Dec 2022.

Kozlov M. Does Omicron hit kids harder? Scientists are trying to find out. Nature. 2022. https://doi.org/10.1038/d41586-022-00309-x.

Bessias S, Harbin A, Lanphier E. (2023) Covid is Surging. Most Young Children Are Still Unvaccinated. In: Hast. Cent. https://www.thehastingscenter.org/covid-is-surging-most-young-children-still-are-unvaccinated/. Accessed 12 Sep 2023.

Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe. 2021;29:1788–1801e6. https://doi.org/10.1016/j.chom.2021.11.005.

Wang R, Chen J, Gao K, et al. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun Biol. 2021;4:1–14. https://doi.org/10.1038/s42003-021-01754-6.

Zhao LP, Roychoudhury P, Gilbert P, et al. Mutations in viral nucleocapsid protein and endoRNase are discovered to associate with COVID19 hospitalization risk. Sci Rep. 2022;12:1–11. https://doi.org/10.1038/s41598-021-04376-4.

Dattner I, Goldberg Y, Katriel G, et al. The role of children in the spread of COVID-19: using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children. PLOS Comput Biol. 2021;17:e1008559.

Charumilind S, Craven M, Lamb J et al. (2022) When will the COVID-19 pandemic end? 9.

Norwegian Institute of Public Health (NIPH). Weekly reports for coronavirus and COVID-19 - Week 17 (25/04 to 01/05/2022). 2022b. https://www.fhi.no/en/publ/2020/weekly-reports-for-coronavirus-og-covid-19/. Accessed 15 Dec 2022.

Ludvigsson JF. Children are unlikely to be the main drivers of the COVID-19 pandemic - A systematic review. Acta Paediatr. 2020;109:1525–30. https://doi.org/10.1111/apa.15371.

Kociolek LK, Muller WJ, Yee R, et al. Comparison of Upper Respiratory viral load distributions in asymptomatic and symptomatic children diagnosed with SARS-CoV-2 Infection in Pediatric Hospital Testing Programs. J Clin Microbiol Microbiol. 2020. https://doi.org/10.1128/JCM.02593-20.

Cordery R, Reeves L, Zhou J, et al. Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London. The Lancet Microbe. 2022;3:e814–23. https://doi.org/10.1016/s2666-5247(22)00124-0.

White LF, Murray EJ, Chakravarty A. The role of schools in driving SARS-CoV-2 transmission: not just an open-and-shut case. Cell Rep Med. 2022;3:100556. https://doi.org/10.1016/j.xcrm.2022.100556.

World Health Organization (WHO). Rapidly escalating COVID-19 cases amid reduced virus surveillance forecasts a challenging autumn and winter in the WHO European Region. In: WHO Press. 2022b. https://www.who.int/europe/news/item/19-07-2022-rapidly-escalating-covid-19-cases-amid-reduced-virus-surveillance-forecasts-a-challenging-autumn-and-winter-in-the-who-european-region. Accessed 16 Aug 2022.

Leech G, Rogers-Smith C, Monrad JT, et al. Mask wearing in community settings reduces SARS-CoV-2 transmission. Proc Natl Acad Sci. 2022;119:e2119266119. https://doi.org/10.1073/pnas.2119266119.

Bartsch SM, O’Shea KJ, Chin KL, et al. Maintaining face mask use before and after achieving different COVID-19 vaccination coverage levels: a modelling study. Lancet Public Heal. 2022;7:e356–65. https://doi.org/10.1016/S2468-2667(22)00040-8.