Air Frying as a Heat Pre-treatment Method for Improving the Extraction and Yield of Canolol from Canola Seed Oil
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aachary, A. A., Chen, Y., Eskin, N. A. M., & Thiyam-Hollander, U. (2014). Crude canolol and canola distillate extracts improve the stability of refined canola oil during deep-fat frying. European Journal of Lipid Science and Technology, 116(11), 1467–1476. https://doi.org/10.1002/EJLT.201300498
Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., & Achachlouei, B. F. (2010). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry, 121(4), 1211–1215. https://doi.org/10.1016/j.foodchem.2010.02.006
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “‘Antioxidant Power’”: The FRAP Assay. Analytical Biochemistry, 239, 70–76
Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/J.LFS.2003.09.047
Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-Inchi (Plukenetia volubilis L.). https://doi.org/10.1021/jf500936j
Cong, Y., Zheng, M., Huang, F., Liu, C., & Zheng, C. (2020). Sinapic acid derivatives in microwave-pretreated rapeseeds and minor components in oils. Journal of Food Composition and Analysis, 87, 103394. https://doi.org/10.1016/J.JFCA.2019.103394
Eskin, M. N. A., Aladedunye, F., Unger, E. H., Shah, S., Chen, G., & Jones, P. J. (2020). Canola Oil. Bailey’s Industrial Oil and Fat Products, 1–63. https://doi.org/10.1002/047167849X.BIO004.PUB2
Fadairo, O., Nandasiri, R., Alashi, A. M., Eskin, N. A. M., & Thiyam-Höllander, U. (2021). Air frying pretreatment and the recovery of lipophilic sinapates from the oil fraction of mustard samples. Journal of Food Science, 86(9), 3810–3823. https://doi.org/10.1111/1750-3841.15861
Fitriansyah, S. N., Fidrianny, I., & Ruslan, K. (2017). Correlation of total phenolic, flavonoid and carotenoid content of Sesbania sesban (L. Merr) leaves extract with DPPH scavenging activties. Available Online on International Journal of Pharmacognosy and Phytochemical Research, 9(1). https://doi.org/10.25258/ijpapr.v9i1.8047
Girgih, A. T., Udenigwe, C. C., & Aluko, R. E. (2011). In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. JAOCS, Journal of the American Oil Chemists’ Society, 88(3), 381–389. https://doi.org/10.1007/S11746-010-1686-7/TABLES/2
Górnaś, P., Siger, A., Juhņeviča, K., Lacis, G., Šne, E., & Segliņa, D. (2014). Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. European Journal of Lipid Science and Technology, 116(5), 563–570. https://doi.org/10.1002/EJLT.201300425
Harbaum-Piayda, B., Oehlke, K., Sönnichsen, F. D., Zacchi, P., Eggers, R., & Schwarz, K. (2010). New polyphenolic compounds in commercial deodistillate and rapeseed oils. Food Chemistry, 123(3), 607–615. https://doi.org/10.1016/j.foodchem.2010.04.078
Hideo Kuwahara, †,‡, Ayako Kanazawa, §, Daisuke Wakamatu, ⊥,#, Shigeru Morimura, #, Kenji Kida, #, Takaaki Akaike, † and, & Hiroshi Maeda*, †. (2004). Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. https://doi.org/10.1021/JF040045+
Jalili, F., Jafari, S. M., Emam-Djomeh, Z., Malekjani, N., & Farzaneh, V. (2018). Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598–612. https://doi.org/10.1007/S12161-017-1030-Z/TABLES/6
Khattab, R., Eskin, M., Aliani, M., & Thiyam, U. (2010). Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. JAOCS, Journal of the American Oil Chemists’ Society, 87(2), 147–155. https://doi.org/10.1007/S11746-009-1486-0
Khattab, R. Y., Eskin, M. N. A., & Thiyam-Hollander, U. (2014). Production of canolol from canola meal phenolics via hydrolysis and microwave-induced decarboxylation. JAOCS, Journal of the American Oil Chemists’ Society, 91(1), 89–97. https://doi.org/10.1007/S11746-013-2345-6
Koski, A., Pekkarinen, S., Hopia, A., Wähälä, K., & Heinonen, M. (2003). Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability. European Food Research and Technology, 217(2), 110–114. https://doi.org/10.1007/s00217-003-0721-4
Kraljić, K., Škevin, D., Barišić, L., Kovačević, M., Obranović, M., & Jurčević, I. (2015). Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chemistry, 187, 236–242. https://doi.org/10.1016/J.FOODCHEM.2015.04.039
Kraljić, K., Škevin, D., Pospišil, M., Obranović, M., Signeral, S. N. D., & Bosolt, T. (2013). Quality of rapeseed oil produced by conditioning seeds at modest temperatures. Journal of the American Oil Chemists’ Society, 90(4), 589–599. https://doi.org/10.1007/S11746-012-2195-7
Li, J., & Guo, Z. (2016). Concurrent extraction and transformation of bioactive phenolic compounds from rapeseed meal using pressurized solvent extraction system. Industrial Crops and Products, 94, 152–159. https://doi.org/10.1016/j.indcrop.2016.08.045
Matthäus, B., Pudel, F., Chen, Y., Achary, A., & Thiyam-Holländer, U. (2014). Impact of canolol-enriched extract from heat-treated canola meal to enhance oil quality parameters in deep-frying: A comparison with rosemary extract and TBHQ-fortified oil systems. Journal of the American Oil Chemists’ Society, 91(12), 2065–2076. https://doi.org/10.1007/S11746-014-2561-8
Mayengbam, S., Aachary, A., & Thiyam-Holländer, U. (2014). Endogenous phenolics in hulls and cotyledons of mustard and canola: A comparative study on its sinapates and antioxidant capacity. Antioxidants, 3(3), 544–558. https://doi.org/10.3390/antiox3030544
Nandasiri, R., & Eskin, N. A. M. (2022). Canolol and its derivatives: A novel bioactive with antioxidant and anticancer properties. Advances in Food and Nutrition Research, 100, 109–129. https://doi.org/10.1016/BS.AFNR.2022.03.003
Nandasiri, R., Eskin, N. A. M., & Thiyam-Höllander, U. (2019). Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. Journal of Food Science, 84(11), 3117–3128. https://doi.org/10.1111/1750-3841.14799
Nandasiri, R., Imran, A., Thiyam-Holländer, U., & Eskin, N. A. M. (2021). Rapidoxy® 100: A solvent-free pre-treatment for production of canolol. Frontiers in Nutrition, 8, 687851. https://doi.org/10.3389/FNUT.2021.687851
Rękas, A., Ścibisz, I., Siger, A., & Wroniak, M. (2017). The effect of microwave pretreatment of seeds on the stability and degradation kinetics of phenolic compounds in rapeseed oil during long-term storage. Food Chemistry, 222, 43–52. https://doi.org/10.1016/j.foodchem.2016.12.003
Różańska, M. B., Kowalczewski, P. Ł., Tomaszewska-Gras, J., Dwiecki, K., & Mildner-Szkudlarz, S. (2019). Seed-roasting process affects oxidative stability of cold-pressed oils. Antioxidants 2019, Vol. 8, Page 313, 8(8), 313. https://doi.org/10.3390/ANTIOX8080313
Shrestha, K., & de Meulenaer, B. (2014). Effect of seed roasting on canolol, tocopherol, and phospholipid contents, Maillard type reactions, and oxidative stability of mustard and rapeseed oils. Journal of Agricultural and Food Chemistry, 62(24), 5412–5419. https://doi.org/10.1021/jf500549t
Shrestha, K., Stevens, C. V., & De Meulenaer, B. (2012). Isolation and identification of a potent radical scavenger (canolol) from roasted high erucic mustard seed oil from Nepal and its formation during roasting. Journal of Agricultural and Food Chemistry, 60(30), 7506–7512. https://doi.org/10.1021/jf301738y
Siger, A., & Józefiak, M. (2016). The effects of roasting and seed moisture on the phenolic compound levels in cold-pressed and hot-pressed rapeseed oil. European Journal of Lipid Science and Technology, 118(12), 1952–1958. https://doi.org/10.1002/ejlt.201500249
Siger, A., Józefiak, M., & Górnaś, P. (2017). Roasting and seed moisture on the antioxidant activity. Acta Scientiarum Polonorum Technologia Alimentaria, 1(16), 69–81.
Siger, A., Kaczmarek, A., & Rudzińska, M. (2015). Antioxidant activity and phytochemical content of cold-pressed rapeseed oil obtained from roasted seeds. European Journal of Lipid Science and Technology, 117(8), 1225–1237. https://doi.org/10.1002/ejlt.201400378
Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137–149. https://doi.org/10.1111/J.1745-4522.2007.00107.X
Sørensen, A. D. M., Friel, J., Winkler-Moser, J. K., Jacobsen, C., Huidrom, D., Reddy, N., & Thiyam-Holländer, U. (2013). Impact of endogenous canola phenolics on the oxidative stability of oil-in-water emulsions. European Journal of Lipid Science and Technology, 115(5), 501–512. https://doi.org/10.1002/EJLT.201200354
Spielmeyer, A., Wagner, A., & Jahreis, G. (2009). Influence of thermal treatment of rapeseed on the canolol content. Food Chemistry, 112(4), 944–948. https://doi.org/10.1016/j.foodchem.2008.07.011
Sun-Waterhouse, D., Xue, D., & Wadhwa, S. (2013). Effects of added phenolics on the lipid deterioration and antioxidant content of deep-fried potato fritters. Food and Bioprocess Technology, 6(11), 3256–3265. https://doi.org/10.1007/S11947-012-1001-8/FIGURES/3
Szydlowska-Czerniak, A., Trokowski, K., Karlovits, G., & Szlyk, E. (2010). Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. Journal of Agricultural and Food Chemistry, 58(13), 7502–7509. https://doi.org/10.1021/JF100852X
Team, R. C. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Teh, S. S., Niven, B. E., Bekhit, A. E. D. A., Carne, A., & Birch, E. J. (2015). Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. International Journal of Food Science & Technology, 50(5), 1109–1115. https://doi.org/10.1111/IJFS.12749
Terpinc, P., Polak, T., Šegatin, N., Hanzlowsky, A., Ulrih, N. P., & Abramovič, H. (2011). Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chemistry, 128(1), 62–69. https://doi.org/10.1016/J.FOODCHEM.2011.02.077
Vuorela, S., Kreander, K., Karonen, M., Nieminen, R., Hämäläinen, M., Galkin, A., Laitinen, L., Salminen, J. P., Moilanen, E., Pihlaja, K., Vuorela, H., Vuorela, P., & Heinonen, M. (2005). Preclinical evaluation of rapeseed, raspberry, and pine bark phenolics for health related effects. Journal of Agricultural and Food Chemistry, 53(15), 5922–5931. https://doi.org/10.1021/JF050554R/ASSET/IMAGES/LARGE/JF050554RF00001.JPEG
Wang, W., Yang, B., Li, W., Zhou, Q., Liu, C., & Zheng, C. (2021). Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products. LWT, 143
Wijesundera, C., Ceccato, C., Fagan, P., & Shen, Z. (2008). Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. European Journal of Lipid Science and Technology, 110(4), 360–367. https://doi.org/10.1002/ejlt.200700214
Xie, Z., Huang, J., Xu, X., & Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2), 370–376. https://doi.org/10.1016/J.FOODCHEM.2008.03.078
Yang, M., Huang, F., Liu, C., Zheng, C., Zhou, Q., & Wang, H. (2013). Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food and Bioprocess Technology, 6(11), 3206–3216. https://doi.org/10.1007/S11947-012-0987-2/TABLES/3
Yang, M., Zheng, C., Zhou, Q., Liu, C., Li, W., & Huang, F. (2014). Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content. Journal of Agricultural and Food Chemistry, 62(8), 1956–1963. https://doi.org/10.1021/jf4054287
Yu, G., Guo, T., Huang, Q., Shi, X., & Zhou, X. (2020). Preparation of high-quality concentrated fragrance flaxseed oil by steam explosion pretreatment technology. Food Science & Nutrition, 8(4), 2112–2123. https://doi.org/10.1002/FSN3.1505
Zacchi, P., & Eggers, R. (2008). High-temperature pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of refining. European Journal of Lipid Science and Technology, 110(2), 111–119. https://doi.org/10.1002/ejlt.200700135
Zago, E., Lecomte, J., Barouh, N., Aouf, C., Carré, P., Fine, F., & Villeneuve, P. (2015). Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Industrial Crops and Products, 76, 1061–1070. https://doi.org/10.1016/j.indcrop.2015.08.022
Zhang, L., Wang, L. J., Jiang, W., & Qian, J. Y. (2017). Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT, 84, 73–81. https://doi.org/10.1016/J.LWT.2017.05.048