Aharonov–Berry superoscillations in the radial harmonic oscillator potential

Daniel Alpay1, Fabrizio Colombo2, Irene Sabadini2, Daniele C. Struppa3
1Schmid College of Science and Technology, Chapman University, Orange, USA
2Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
3Donald Bren Distinguished Presidential Chair in Mathematics, Chapman University, Orange, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharonov, Y., Albert, D., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

Aharonov, Y., Colombo, F., Nussinov, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillation phenomena in $$SO(3)$$. Proc. R. Soc. A. 468, 3587–3600 (2012)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: On the Cauchy problem for the Schrödinger equation with superoscillatory initial data. J. Math. Pures Appl. 99, 165–173 (2013)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Some mathematical properties of superoscillations. J. Phys. A 44, 365304 (2011). (16pp)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillating sequences as solutions of generalized Schrodinger equations. J. Math. Pures Appl. 103, 522–534 (2015)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: Superoscillating sequences in several variables. J. Fourier Anal. Appl. 22, 751–767 (2016)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: The mathematics of superoscillations. Mem. Am. Math. Soc. 247(1174), v+107 (2017)

Aharonov, Y., Colombo, F., Sabadini, I., Struppa, D.C., Tollaksen, J.: How superoscillating tunneling waves can overcome the step potential (2019) (preprint)

Aharonov, Y., Colombo, F., Struppa, D.C., Tollaksen, J.: Schrödinger evolution of superoscillations under different potentials. Quantum Stud. Math. Found. 5, 485–504 (2018)

Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH, Weinheim (2005)

Aharonov, Y., Sabadini, I., Tollaksen, J., Yger, A.: Classes of superoscillating functions. Quantum Stud. Math. Found. 5, 439–454 (2018)

Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41, 11–20 (1990)

Aoki, T., Colombo, F., Sabadini, I., Struppa, D.C.: Continuity theorems for a class of convolution operators and applications to superoscillations. Ann. Mat. Pura Appl. 197, 1533–1545 (2018)

Aoki, T., Colombo, F., Sabadini, I., Struppa, D.C.: Continuity of some operators arising in the theory of superoscillations. Quantum Stud. Math. Found. 5, 463–476 (2018)

Berenstein, C.A., Gay, R.: Complex Variables. An Introduction. Graduate Texts in Mathematics, vol. 125, p. xii+650. Springer, New York (1991)

Berry, M.V.: Evanescent and real waves in quantum billiards and Gaussian beams. J. Phys. A. 27, 391 (1994)

Berry, M.: Exact nonparaxial transmission of subwavelength detail using superoscillations. J. Phys. A 46, 205203 (2013)

Berry, M.: Faster than Fourier, 1994, in Quantum Coherence and Reality. In: Anandan, J.S., Safko, J.L. (eds.) Celebration of the 60th Birthday of Yakir Aharonov, pp. 55–65. World Scientific, Singapore (1994)

Berry, M.: Representing superoscillations and narrow Gaussians with elementary functions. Milan J. Math. 84, 217–230 (2016)

Berry, M., Dennis, M.R.: Natural superoscillations in monochromatic waves in D dimension. J. Phys. A 42, 022003 (2009)

Berry, M., Popescu, S.: Evolution of quantum superoscillations, and optical superresolution without evanescent waves. J. Phys. A 39, 6965–6977 (2006)

Berry, M., Pragya, P.S.: Pointer supershifts and superoscillations in weak measurements. J. Phys. A 45, 015301 (2012)

Berry, M., et al.: Roadmap on superoscillations. J. Opt. 21, 053002 (2019)

Buniy, R., Colombo, F., Sabadini, I., Struppa, D.C.: Quantum harmonic oscillator with superoscillating initial datum. J. Math. Phys. 55, 113511 (2014)

Colombo, F., Sabadini, I., Struppa, D.C., Yger, A.: Superoscillating functions and the super-shift for generalized functions. Proc. RIMS Kyoto Univ. 55, 1–24 (2019). https://doi.org/10.4171/PRIMS/55-4-1

Colombo, F., Gantner, J., Struppa, D.C.: Evolution by Schrödinger equation of Ahronov–Berry superoscillations in centrifugal potential. In: Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, vol. 475, no. 2225, pp. 20180390 (2019). https://doi.org/10.1098/rspa.2018.0390

Ferreira, P.J.S.G., Kempf, A.: Unusual properties of superoscillating particles. J. Phys. A 37, 12067–76 (2004)

Ferreira, P.J.S.G., Kempf, A.: Superoscillations: faster than the Nyquist rate. IEEE Trans. Signal. Process. 54, 3732–3740 (2006)

Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007)

Grosche, C., Steiner, F.: Handbook of Feynman Path Integrals, Springer Tracts in Modern Physics, vol. 145, p. x+449. Springer, Berlin (1998)

Kempf, A.: Four aspects of superoscillations. Quantum Stud. Math. Found. 5, 477–484 (2018)

Khandekar, K.C., Lawande, S.V.: Exact propagator for a time-dependent harmonic oscillator with and without a singular perturbation. J. Math. Phys. 16, 384 (1975)

Lee, D.G., Ferreira, P.J.S.G.: Superoscillations of prescribed amplitude and derivative. IEEE Trans. Signal Process. 62, 3371–3378 (2014)

Lee, D.G., Ferreira, P.J.S.G.: Superoscillations with optimal numerical stability. IEEE Sign. Proc. Lett. 21(12), 1443–1447 (2014)

Lindberg, J.: Mathematical concepts of optical superresolution. J. Opt. 14, 083001 (2012)

Schulman, L.S.: Techniques and Applications of Path Integration. A Wiley-Interscience Publication, p. xv+359. Wiley, New York (1981)

Taylor, B.A.: Some locally convex spaces of entire functions. In: Korevaar, J., Chern, S.S., Ehrenpreis, L., Fuchs, W.H.J., Rubel, L.A. (eds.) Entire Functions and Related Parts of Analysis, Proceedings of Symposia in Pure Matehamtics, vol. 11, pp. 431–467. American Mathematical Society, Providence, RI (1968)

Tsaur, G.-Y., Wang, J.: Constructing Green functions of the Schrödinger equation by elementary transformations. Am. J. Phys. 74(7), 600–606 (2006)