Aglycemia giữ phosphoryl hóa oxy hóa ty thể dưới điều kiện thiếu oxy ở tế bào HepG2

Journal of bioenergetics - Tập 47 - Trang 467-476 - 2015
Lydie Plecitá-Hlavatá1, Jan Ježek1, Petr Ježek1
1Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic

Tóm tắt

Sinh lý năng lượng tế bào ung thư, duy trì quá trình đường phân hiếu khí hỗn hợp (hiện tượng Warburg) và phosphoryl hóa oxy hóa (OXPHOS), vẫn chưa được làm sáng tỏ hoàn toàn. Sự ức chế OXPHOS phụ thuộc vào thiếu oxy quyết định quá trình đường phân hiếu khí. Để làm rõ thêm chi tiết, chúng tôi đã nghiên cứu sự thích ứng với thiếu oxy (lên đến 72 giờ với 5% oxy) của tế bào ung thư biểu mô gan HepG2. thành phần điều hòa chính, yếu tố gây thiếu oxy (HIF)-1α (HIF-1α) được ổn định ở 5 giờ trong môi trường 5% oxy cho cả ba chế độ nghiên cứu, tức là trong tế bào đường phân ở nồng độ glucose 5 mM hoặc 25 mM, hoặc trong tế bào aglycemic (Oxphos) khi glucose được thay thế bằng galactose. Tuy nhiên, sự ức chế hô hấp do HIF gây ra đã bị ngăn chặn trong tình trạng aglycemia, điều này có mối tương quan với tỷ lệ cao của pyruvate dehydrogenase (PDH) không được phosphoryl hóa ở 5% oxy. Phản ứng HIF bị chỉnh sửa trong tế bào Oxphos, được gọi là phản ứng phi chính thống, đối lập với sự ức chế hô hấp thông thường giảm xuống 45% hoặc 43%, được quan sát thấy trong tế bào đường phân thích nghi với thiếu oxy ở nồng độ glucose 5 mM hoặc 25 mM, tương ứng. Những tế bào đường phân thiếu oxy này thường có PDH được phosphoryl hóa cao và rất có thể đã sử dụng pyruvate thông qua phản ứng aminotransferase của glutaminolysis để cung cấp ít nhất là hô hấp bị ức chế. Ngoài ra, các tế bào đường phân có vẻ như là khá kháng với sự apoptosis do staurosporine gây ra, trong khi đó các tế bào HepG2 aglycemic (Oxphos) thể hiện độ nhạy cảm cao hơn nhiều. Chúng tôi kết luận rằng aglycemia điều chỉnh tín hiệu HIF thiếu oxy về một phản ứng phi chính thống mà không thể thực hiện phosphoryl hóa PDH hoàn chỉnh, cho phép đầu vào pyruvate cao cho OXPHOS từ quá trình đường phân tăng lên, điều này cùng với sự tiếp tục của glutaminolysis duy trì hô hấp gần như không thay đổi. Sự phục hồi OXPHOS tương tự có thể giải thích độ nhạy khác nhau của khối u với hóa trị liệu và các can thiệp dược lý khác.

Từ khóa

#ung thư #tế bào HepG2 #phosphoryl hóa oxy hóa #thiếu oxy #đường phân hiếu khí #yếu tố gây thiếu oxy

Tài liệu tham khảo

Ameri K, Rajah AM, Nguyen V, Sanders TA, Jahangiri A, Delay M, Donne M, Choi HJ, Tormos KV, Yeghiazarians Y, Jeffrey SS, Rinaudo PF, Rowitch DH, Aghi M, Maltepe E (2013) Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress. PLoS One 8:e62758 Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E (2015) HIGD1A regulates oxygen consumption, ROS production, and AMPK activity during glucose deprivation to modulate cell survival and tumor growth. Cell Rep pii:S2211–1247(15)00033–00039. Anderson KA, Hirschey MD (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem 52:23–35 Baracca A, Sgarbi G, Padula A, Solaini G (2013) Glucose plays a main role in human fibroblasts adaptation to hypoxia. Int J Biochem Cell Biol 45:1356–1365 Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036 Bell EL, Emerling BM, Ricoult SJ, Guarente L (2011) SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30:2986–2996 Brocato J, Chervona Y, Costa M (2014) Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 85:651–657 Buccellato LJ, Tso M, Akinci OI, Chandel NS, Budinger GR (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 279:6753–6760 Cerniglia GJ, Dey S, Gallagher-Colombo SM, Daurio NA, Tuttle S, Busch TM, Lin A, Sun R, Esipova TV, Vinogradov SA, Denko N, Koumenis C, Maity A (2015) The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation. Mol Cancer Ther pii: molcanther.0888. Chandel NS (2010) Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol 174:175–181 Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95:11715–11720 Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840 Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008a) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186 Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008b) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233 Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, Jeong SM, Dempsey JM, Parkhitko A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153:840–854 Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713 Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122 Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. Embo J 31:2448–2460 Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–414 Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, Hikita M, Shinzawa-Itoh K, Takafuji K, Higo S, Kato H, Yamazaki S, Matsuoka K, Nakano A, Asanuma H, Asakura M, Minamino T, Goto Y, Ogura T, Kitakaze M, Komuro I, Sakata Y, Tsukihara T, Yoshikawa S, Takashima S (2015) Higd1a is a positive regulator of cytochrome c oxidase. Proc Natl Acad Sci U S A 112:1553–1558 Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73. Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877 Hsu CC, Wang CH, Wu LC, Hsia CY, Chi CW, Yin PH, Chang CJ, Sung MT, Wei YH, Lu SH, Lee HC (2013) Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochim Biophys Acta 1830:4743–4751 Hubbi ME, Hu H, Kshitiz NF, Gilkes DM, Semenza GL (2013) Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem 288:20768–20775 Ježek P, Plecitá–Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622 Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol Cell Physiol 271:C1172–C1180 Jose C, Rossignol R (2013) Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies. Int J Biochem Cell Biol 45:123–129 Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K, Fukuda K, Hirota K (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16:203–216 Kikuchi D, Minamishima YA, Nakayama K (2014) Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1β and regulates the cellular PDH activity. Biochem Biophys Res Commun 451:288–294 Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185 Krall AS, Christofk HR (2013) Cancer: a metabolic metamorphosis. Nature 496:38–40 Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393–399 Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Van der Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384 Métrailler-Ruchonnet I, Pagano A, Carnesecchi S, Ody C, Donati Y, Barazzone-Argiroffo C (2007) Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. Free Radic Biol Med 42:1062–1074 Morava E (2014) Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab 112:275–279 Morten KJ, Badder L, Knowles HJ (2013) Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts. J Pathol 229:755–764 Nguyen LK, Cavadas MA, Scholz CC, Fitzpatrick SF, Bruning U, Cummins EP, Tambuwala MM, Manresa MC, Kholodenko BN, Taylor CT, Cheong A (2013) A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J Cell Sci 126:1454–1463 Owada S, Shimoda Y, Tsuchihara K, Esumi H (2013) Critical role of H2O2 generated by NOX4 during cellular response under glucose deprivation. PLoS One 8:e56628 Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LW, Haigis MC, Villani G, Puri PL, Sartorelli V, Simone C (2013) A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci 70:2015–2029 Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993 Sauer LA, Dauchy RT, Nagel WO, Morris HP (1980) Mitochondrial malic enzymes. Mitochondrial NAD(P) + −dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas. J Biol Chem 255:3844–3848 Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS (2001) Transcription factor HIF1 is necessary mediator of the Pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444 Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9 Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268 Semenza GL (2012a) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408 Semenza GL (2012b) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214 Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671 Smolková K, Plecitá–Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P (2011) Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 43:950–968 Smolková K, Dvořák A, Zelenka J, Vítek L, Ježek P Reductive carboxylation and 2-hydroxyglutarate formation by wild–type IDH2 in breast carcinoma cells. Int J Biochem Cell Biol. 2015;47 Sookoian S, Pirola CJ (2012) Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol 18:3775–3781 Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19:285–292 Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26 Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB (2009) The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci U S A 106:21660–21665 Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499 Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235 Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080 Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML, Harris AL (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 98:1975–1984 Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787 Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136 Yamashita H, Takenoscita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98:9116–9121 Yuneva M (2008) Finding an “Achilles’ heel” of cancer. Cell Cycle 7:2083–2089 Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC dependent apoptosis in human cells. J Cell Biol 178:93–105 Zepeda AB, Pessoa Jr A, Castillo RL, Figueroa CA, Pulgar VM, Farías JG (2013) Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct 31:451–459 Zhang Y, Yang JM (2013) Altered energy metabolism in cancer. A unique opportunity for the therapeutic intervention. Cancer Biol Ther 2:81–89 Zielke HR, Zielke CL, Ozand PT (1984) Glutamine: a major energy source for cultured mammalian cells. Fed Proc 43:121–125