Aging of mesenchymal stem cell in vitro

BMC Cell Biology - Tập 7 Số 1 - 2006
Mandana Mohyeddin Bonab1, Kamran Alimoghaddam1, Fatemeh Talebian2, Seyed H. Ghaffari1, Ardeshir Ghavamzadeh1, Behrouz Nikbin2
1Hematology-Oncology & BMT Research Center, Shariati Hospital, Tehran University of Medical Sciences, Iran
2Immunogenetics lab, Dept. of Immunology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Tóm tắt

Abstract Background

A hot new topic in medical treatment is the use of mesenchymal stem cells (MSC) in therapy. The low frequency of this subpopulation of stem cells in bone marrow (BM) necessitates their in vitro expansion prior to clinical use. We evaluated the effect of long term culture on the senescence of these cells.

Results

The mean long term culture was 118 days and the mean passage number was 9. The average number of PD decreased from 7.7 to 1.2 in the 10th passage. The mean telomere length decreased from 9.19 Kbp to 8.7 kbp in the 9th passage. Differentiation potential dropped from the 6th passage on. The culture's morphological abnormalities were typical of the Hayflick model of cellular aging.

Conclusion

We believe that MSC enter senescence almost undetectably from the moment of in vitro culturing. Simultaneously these cells are losing their stem cell characteristics. Therefore, it is much better to consider them for cell and gene therapy early on.

Từ khóa


Tài liệu tham khảo

Gerson SL: Mesenchymal stem cells: no longer second class marrow citizens. Nat Med. 1999, 5 (3): 262-4. 10.1038/6470.

Anklesaria P, Kase K, Glowacki J, Holland CA, Sakakeeny MA, Wright JA, FitzGerald TJ, Lee CY, Greenberger JS: Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc Natl Acad Sci U S A. 1987, 84 (21): 7681-5.

Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM: Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000, 18 (2): 307-16.

Devine SM, Hoffman R: Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol. 2000, 7 (6): 358-63. 10.1097/00062752-200011000-00007.

Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S: Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998, 16 (2): 155-62. 10.1002/jor.1100160202.

Fukuda K, Sakamoto N, Narita T, Saitoh K, Kameda T, Iba H, Yasugi S: Application of efficient and specific gene transfer systems and organ culture techniques for the elucidation of mechanisms of epithelial-mesenchymal interaction in the developing gut. Dev Growth Differ. 2000, 42 (3): 207-11. 10.1046/j.1440-169x.2000.00503.x.

Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF: Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol. 1982, 10 (2): 217-27.

Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM: Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003, 121 (2): 368-74. 10.1046/j.1365-2141.2003.04284.x.

Cheng FJ, Zou P, Zhong ZD, Guo R, Xiao J: The growth characteristics of mesenchymal stem/progenitor cells in human umbilical cord blood. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2003, 11 (6): 565-8.

Van Zglinicki T, Saretzki G, Docke W, Lotze C: Mild hyperoxia shortens telomeres and inhibits proliferation: a model for senescence?. Exp Cell Res. 1995, 220: 186-10.1006/excr.1995.1305.

Stenderup K, Justesen J, Clausen C, Kassem M: Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003, 33 (6): 919-26. 10.1016/j.bone.2003.07.005.

Hayflick L: The limited In Vitro lifetime of human diploid cell strains. Exp Cell Res. 1965, 37: 614-36. 10.1016/0014-4827(65)90211-9.

Colter DC, Class R, DiGirolamo CM, Prockop DJ: Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 97 (7): 3213-8. 10.1073/pnas.070034097. 2000 Mar 28

Smith JR, Lincoln DW: Aging of cells in culture. Int Rev Cytol. 1984, 89: 151-77.

Allsopp RC, Harley CB: Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res. 1995, 219 (1): 130-6. 10.1006/excr.1995.1213.

Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, Gerald WL: Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet. 1998, 19 (2): 182-6. 10.1038/554.

Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells. 2004, 22 (5): 675-82. 10.1634/stemcells.22-5-675.

Parsch D, Fellenberg J, Brummendorf TH, Eschlbeck AM, Richter W: Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J Mol Med. 2004, 82 (1): 49-55. 10.1007/s00109-003-0506-z.

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284 (5411): 143-7. 10.1126/science.284.5411.143. 1999 Apr 2

Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 1999, 107 (2): 275-81. 10.1046/j.1365-2141.1999.01715.x.

Conget PA, Minguell JJ: Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999, 181 (1): 67-73. 10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO;2-C.

Rubio D: Spontaneous human adult stem cell transformation. Cancer Res. 65 (8): 3035-9. 2005 Apr 15

Serakinci N: Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene. 23 (29): 5095-8. 10.1038/sj.onc.1207651. 2004 Jun 24