Aging Studies of Cu–Sn Intermetallics in Cu Micropillars Used in Flip Chip Attachment onto Cu Lead Frames
Tóm tắt
Copper micropillars plated onto a silicon die and soldered with Sn-Ag solder to a copper lead frame in a flip chip on lead package have been subjected to high-temperature storage at 150°C and 175°C for 500 h, 1000 h, and 1500 h. Cu6Sn5 and Cu3Sn intermetallic compounds were found on both sides of the solder, but the growth rates were not the same as evidenced by different values of the growth exponent n. Cu and Sn diffusion controlled the Cu3Sn growth in the Cu pillar interface (n ≈ 0.5), while interface reactions controlled the growth in the Cu lead frame interface (n ≈ 0.8). Increasing the aging temperature increased the growth of Cu3Sn as well as the presence of microvoids in the Cu lead frame side. Adding Ni as a barrier layer on the Cu pillar prevented the growth of Cu3Sn in the Cu pillar interface and reduced its growth rate on the lead frame side, even at higher aging temperatures.
Tài liệu tham khảo
R. Lanzone, in Advanced Flip Chip Packaging, ed. by C.P. Tong, H.-M. Lai, Y.-S. Wong (Springer, London, 2013), p. 1
D. Patterson, ChipScale Rev. 16, 3 (2012).
S. Madeni and J.C. Liu, Soldag. Insp Sao Paolo 16, 86 (2011).
W.M. Tang, A. He, Q. Liu, and D.G. Ivey, Trans. Nonferrous Met. Soc. China (English Ed.) 20, 90 (2010).
H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Thermochim. Acta 459, 34 (2007).
W. Peng, E. Monlevade, and M.E. Marques, Microelectron. Reliab. 47, 2161 (2007).
R. Labie, W. Ruythooren, and J. Van Humbeeck, Intermetallics 15, 396 (2007).
A.C.K. So, Y.C. Chan, S. Member, and J.K.L. Lai, City 20, 161 (1997).
R.J. Fields and S. R. L. III, in Met. Sci. Joining, Proc. TMS Symp. (1991), pp. 1–7
Y.W. Wang, Y.W. Lin, and C.R. Kao, Microelectron. Reliab. 49, 248 (2009).
C.E. Ho, T.T. Kuo, C.C. Wang, and W.H. Wu, Electron. Mater. Lett. 8, 495 (2012).
A. Paul, A.A. Kodentsov, and F.J.J. Van Loo, Z. Für Met. 95, 913 (2004).
L. Yin, P. Kondos, P. Borgesen, Y. Liu, S. Bliznakov, F. Wafula, N. Dimitrov, D.W. Henderson, C. Parks, M. Gao, J. Therriault, J. Wang, and E. Cotts, Proc. - 59th Electron. Components Technol. Conf. 406 (2009)
R.W. Yang, Y.W. Chang, W.C. Sung, and C. Chen, Mater. Chem. Phys. 134, 340 (2012).
L. Lynch, in Electron. Mater. Handb., ed. by M. Minges (ASM International, Ohio, 1989), pp. 507–512.
H. Yu, V. Vuorinen, and J. Kivilahti, IEEE Trans. Electron. Packag. Manuf. 30, 293 (2007).
A. Paul, The Kirkendall Effect in Solid State Diffusion, Ph.D. Dissertation, Eindhoven University of Technology, 2004.
E.J. Cotts, R. Kinyanjui, R. Chromik, A. Zribi, and P. Borgesen, in Handb. Lead Free Solder Technol. Microelectron. Assem., ed. by K.J. Puttlitz and K.A. Stalter (Taylor and Francis, New York, 2004), pp. 465–494.
K. Puttlitz, in Handb. Lead-Free Solder Technol. Microelectron. Assem., ed. by L. L. Faulkiner (Marcel Devker Inc., New York, 2004), pp. 1–47.
Q. Li and Y.C. Chan, J. Alloys Compd. 567, 47 (2013).
IPC/JEDEC J-STD- 020, D.1(Joint IPC/JEDEC Standard for Moisture/Reflow Sensitivity Classification for NonHermetic Surface -Mount Devices)
K. Zeng and K.N. Tu, Mater. Sci. Eng. R Rep. 38, 55 (2002).
S. Ishikawa, E. Hashino, T. Kono, and K. Tatsumi, Mater. Trans. 46, 2351 (2005).
K. Subramanian, Lead-Free Electronic Solders (New York: Springer, 2007).
C. Yu, J. Liu, H. Lu, P. Li, and J. Chen, Intermetallics 15, 1471 (2007).
P. Chia, A. Haseeb, and S. Mannan, Materials (Basel) 9, 430 (2016).
N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, and W. Dong, Sci. Rep. 5, 13491 (2015).
C. Lee, J. Yoon, S. Suh, and S. Jung, J. Mater. Sci.: Mater. Electron. 4, 487 (2003).
T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).
P. Vianco, J. Rejent, and P. Hlava, J. Electron. Mater. 33, 991 (2004).
A. Paul, C. Ghosh, and W.J. Boettinger, Metall. Mater. Trans. A 42, 952 (2011).