Aggregate Formation and the Structure of the Aggregates of Disulfide-Reduced Proteins
Tóm tắt
Aggregate formation and the structure of the aggregates of disulfide-reduced proteins were investigated using α-lactalbumin and lysozyme as model proteins. First, reducing conditions were adjusted so that only one of the four disulfide bonds present in each native protein was cleaved. These three-disulfide (3SS) proteins are known to adopt almost native conformations, yet formed precipitates with a basic peptide, lactoferricin, and heparin and heparin fragment, respectively, at concentrations at which native proteins mixed with these compounds remained clear. The 3SS-lysozyme also formed precipitates in the absence of these ligands. Thus, subtle structural changes could lead to aggregation. Electron microscopy revealed fibrillar structures in the aggregates of extensively reduced proteins in the absence of ligands but not in their presence, which shows that the reduction of disulfide bonds suffices for fibril formation and that ligands inhibit fibril formation.
Tài liệu tham khảo
Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., Fraser, P. E., et al. (1997). Nature 385: 787-793.
Conway, K. A., Rochet, J.-C., Bieganski, R. M., and Lansbury, P. T., Jr. (2001). Science 294: 1346-1349.
Couzin, J. (2001). Science 294: 1257-1258.
Dobson, C. M. (1999). Trends Biochem. Sci. 24: 329-332.
Ellman, G. L. (1959). Arch. Biochem. Biophys. 82: 70-77.
Fink, A. L. (1998). Fold. Des. 3: R9-R23.
Funahashi, J., Takano, K., Ogasahara, K., Yamagata, Y., and Yutani, K. (1996). J. Biochem. 120: 1216-1223.
Gilbert, H. F. (1990). Adv. Enzymol. Relat. Areas Mol. Biol. 63: 69-173.
Goda, S., Takano, K., Yamagata, Y., Nagata, R., Akutsu, H., Maki, S., et al. (2000). Protein Sci. 9: 369-375.
Hwang, P. M., Zhou, N., Sham, X., Arrowsmith, C. H., and Vogel, H. J. (1998). Biochemistry 37: 4288-4298.
Ikeguchi, M., and Sugai, S. (1989). Int. J. Pept. Protein Res. 33: 289-297.
Iyer, K. S., and Klee, W. A. (1973). J. Biol. Chem. 248: 707-710.
Jackson, G. S., Hosszu, L. L. P., Power, A., Hill, A. F., Kenney, J., Saibil, H., et al. (1999). Science 283: 1935-1937.
Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000). Nature 408: 979-982.
Klafki, H.-W., Pick, A. I., Pardowitz, I., Cole, T., Awni, L. A., Barnikol, H.-U., et al. (1993). Biol. Chem. Hoppe-Seyler 374: 1117-1122.
Kuwajima, K., Ikeguchi, M., Sugawara, T., Hiraoka, Y., and Sugai, S. (1990). Biochemistry 29: 8240-8249.
Radford, S. E., Woolfson, D. N., Martin, S. R., Lowe, G., and Dobson, C. M. (1991). Biochem. J. 273: 211-217.
Riddles, P. W., Blakeley, R. L., and Zerner, B. (1979). Anal. Biochem. 94: 75-81.
Swietnicki, W., Morillas, M., Chen, S. G., Gambetti, P., and Surewicz, W. K. (2000). Biochemistry 39: 424-431.
Takase, K. (1998). FEBS Lett. 441: 271-274.
White, F. H., Jr. (1982). Biochemistry 21: 967-977.
White, F. H., Jr., and Wright, A. G., Jr. (1984). Int. J. Pept. Protein Res. 23: 256-270.