Tính phụ thuộc vào tuổi tác của hồ sơ phản ứng tế bào nhớ T cư trú tại ruột non đối với S. Typhi sau khi tiêm chủng Ty21a đường uống ở người

Immunity & Ageing - Tập 18 - Trang 1-17 - 2021
Jayaum S. Booth1,2, Eric Goldberg3,4, Seema A. Patil3,4, Robin S. Barnes1, Bruce D. Greenwald3,4, Marcelo B. Sztein1,2,3,5
1Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, USA
2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, USA
3Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
4Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, USA
5Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, USA

Tóm tắt

Tác động của lão hóa đối với hệ miễn dịch là điều không thể phủ nhận và dẫn đến một trạng thái miễn dịch thay đổi được gọi là lão hóa miễn dịch. Trong cơ thể người, các cơ chế lão hóa miễn dịch đã được nghiên cứu gần như hoàn toàn trong máu. Tuy nhiên, phần lớn các tế bào miễn dịch có mặt trong các mô và thể hiện sự phân bổ khác nhau giữa các phân nhóm tế bào (ví dụ, tế bào T ghi nhớ - TM). Do đó, việc hiểu về lão hóa miễn dịch trong các mô là rất quan trọng, đặc biệt là những mô tiếp xúc với mầm bệnh (ví dụ, ruột). Sử dụng mô hình vaccine thương hàn sống giảm độc lực đường uống ở người, Ty21a, chúng tôi đã nghiên cứu tác động của lão hóa đến các tế bào nhớ T cư trú tại hồi tràng (TI). TRM cung cấp phản ứng miễn dịch hiệu quả thích ứng ngay lập tức tại điểm nhiễm trùng. Tuy nhiên, chưa rõ liệu lão hóa có ảnh hưởng đến các tế bào TRM đáp ứng với S. Typhi tại vị trí nhiễm trùng (ví dụ, TI) hay không. Tại đây, chúng tôi đã xác định tác động của lão hóa đến sự hình thành các phân nhóm TRM đáp ứng với S. Typhi tại TI được kích thích bởi việc tiêm chủng Ty21a. Chúng tôi quan sát thấy rằng lão hóa ảnh hưởng đến tần suất các tế bào đơn nhân trong lamina propria của TI (LPMC) TM và TRM ở cả nhóm tiêm chủng Ty21a và nhóm đối chứng. Ở những tình nguyện viên không tiêm chủng, tần suất LPMC CD103- CD4+ TRM có sự tương quan tích cực với tuổi, trong khi tỷ lệ CD4/CD8 ở LPMC có sự tương quan tiêu cực với tuổi. Chúng tôi nhận thấy rằng những tình nguyện viên lớn tuổi có phản ứng miễn dịch niêm mạc đặc hiệu với S. Typhi yếu hơn sau khi tiêm chủng Ty21a so với người trưởng thành. Ví dụ, CD103+ CD4+ TRM cho thấy sản xuất IL-17A giảm, trong khi CD103- CD4+ TRM thể hiện mức IL-17A và IL-2 thấp hơn ở những người lớn tuổi so với người trưởng thành sau khi tiêm chủng Ty21a. Những kết quả tương tự cũng được quan sát thấy ở các phân nhóm LPMC CD8+ TRM và CD103- CD8+ T cell. Một so sánh giữa các hồ sơ đa chức năng (MF) của cả hai phân nhóm CD4+ và CD8+ TRM giữa người lớn tuổi và người trưởng thành cũng cho thấy sự khác biệt đáng kể về chất lượng và số lượng các phản ứng đơn (S) và MF được kích thích. Lão hóa ảnh hưởng đến phản ứng của TM cư trú tại mô đối với S. Typhi tại hồi tràng sau khi tiêm chủng Ty21a đường uống. Nghiên cứu này là nghiên cứu đầu tiên cung cấp thông tin về việc hình thành các phản ứng miễn dịch đặc hiệu vaccine tại chỗ trong quần thể người lớn tuổi và nhấn mạnh tầm quan trọng của việc đánh giá phản ứng miễn dịch tại mô trong bối cảnh nhiễm trùng và lão hóa. Nghiên cứu này đã được Hội đồng Đánh giá Đạo đức phê duyệt và được đăng ký trên ClinicalTrials.gov (mã số NCT03970304, Đăng ký ngày 29 tháng 5 năm 2019 - Đăng ký hồi cứu).

Từ khóa


Tài liệu tham khảo

Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007;120(4):435–46. https://doi.org/10.1111/j.1365-2567.2007.02555.x. Bektas A, Schurman SH, Sen R, Ferrucci L. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 2017;102(4):977–88. https://doi.org/10.1189/jlb.3RI0716-335R. Scholz JL, Diaz A, Riley RL, Cancro MP, Frasca D. A comparative review of aging and B cell function in mice and humans. Curr Opin Immunol. 2013;25(4):504–10. https://doi.org/10.1016/j.coi.2013.07.006. Nikolich-Zugich J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J Immunol. 2014;193(6):2622–9. https://doi.org/10.4049/jimmunol.1401174. Gozalo PL, Pop-Vicas A, Feng Z, Gravenstein S, Mor V. Effect of influenza on functional decline. J Am Geriatr Soc. 2012;60(7):1260–7. https://doi.org/10.1111/j.1532-5415.2012.04048.x. Johnson RW, Bouhassira D, Kassianos G, Leplege A, Schmader KE, Weinke T. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med. 2010;8(1):37. https://doi.org/10.1186/1741-7015-8-37. Wroe PC, Finkelstein JA, Ray GT, Linder JA, Johnson KM, Rifas-Shiman S, Moore MR, Huang SS. Aging population and future burden of pneumococcal pneumonia in the United States. J Infect Dis. 2012;205(10):1589–92. https://doi.org/10.1093/infdis/jis240. Wagner A, Garner-Spitzer E, Jasinska J, Kollaritsch H, Stiasny K, Kundi M, Wiedermann U. Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Sci Rep. 2018;8(1):9825. https://doi.org/10.1038/s41598-018-28111-8. Tseng HF, Harpaz R, Luo Y, Hales CM, Sy LS, Tartof SY, Bialek S, Hechter RC, Jacobsen SJ. Declining effectiveness of herpes zoster vaccine in adults aged >/=60 years. J Infect Dis. 2016;213(12):1872–5. https://doi.org/10.1093/infdis/jiw047. Edelman R, Deming ME, Toapanta FR, Heuser MD, Chrisley L, Barnes RS, Wasserman SS, Blackwelder WC, Handwerger BS, Pasetti M, Siddiqui KM, Sztein MB. The SENIEUR protocol and the efficacy of hepatitis B vaccination in healthy elderly persons by age, gender, and vaccine route. Immun Ageing. 2020;17(1):9. https://doi.org/10.1186/s12979-020-00179-9. Chen WH, Kozlovsky BF, Effros RB, Grubeck-Loebenstein B, Edelman R, Sztein MB. Vaccination in the elderly: an immunological perspective. Trends Immunol. 2009;30(7):351–9. https://doi.org/10.1016/j.it.2009.05.002. Yanes RE, Gustafson CE, Weyand CM, Goronzy JJ. Lymphocyte generation and population homeostasis throughout life. Semin Hematol. 2017;54(1):33–8. https://doi.org/10.1053/j.seminhematol.2016.10.003. Kim C, Fang F, Weyand CM, Goronzy JJ. The life cycle of a T cell after vaccination - where does immune ageing strike? Clin Exp Immunol. 2017;187(1):71–81. https://doi.org/10.1111/cei.12829. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94. https://doi.org/10.1038/nri2508. Del Giudice G, Goronzy JJ, Grubeck-Loebenstein B, Lambert PH, Mrkvan T, Stoddard JJ, et al. Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis. 2018;4(1):1. https://doi.org/10.1038/s41514-017-0020-0. Quinn KM, Fox A, Harland KL, Russ BE, Li J, Nguyen THO, Loh L, Olshanksy M, Naeem H, Tsyganov K, Wiede F, Webster R, Blyth C, Sng XYX, Tiganis T, Powell D, Doherty PC, Turner SJ, Kedzierska K, la Gruta NL. Age-related decline in primary CD8(+) T cell responses is associated with the development of senescence in virtual memory CD8(+) T cells. Cell Rep. 2018;23(12):3512–24. https://doi.org/10.1016/j.celrep.2018.05.057. Thome JJ, Farber DL. Emerging concepts in tissue-resident T cells: lessons from humans. Trends Immunol. 2015;36(7):428–35. https://doi.org/10.1016/j.it.2015.05.003. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16(2):79–89. https://doi.org/10.1038/nri.2015.3. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, Senda T, Sun X, Ho SH, Lerner H, Friedman AL, Shen Y, Farber DL. Human tissue-resident memory T cells are defined by Core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017;20(12):2921–34. https://doi.org/10.1016/j.celrep.2017.08.078. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013;38(1):187–97. https://doi.org/10.1016/j.immuni.2012.09.020. Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med. 2015;7(279):279ra39. Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, Stark R, Brasser G, Jongejan A, Jonkers RE, Nota B, Basak O, Clevers HC, Moerland PD, Amsen D, van Lier RAW. Programs for the persistence, vigilance and control of human CD8(+) lung-resident memory T cells. Nat Immunol. 2016;17(12):1467–78. https://doi.org/10.1038/ni.3589. Levine MM, Ferreccio C, Abrego P, Martin OS, Ortiz E, Cryz S. Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine. 1999;17(Suppl 2):S22–7. https://doi.org/10.1016/S0264-410X(99)00231-5. Levine MM. Typhoid fever vaccines. In: Plotkin S, Orenstein WA, Offit PA, Edwards KM, editors. Plokin's Vaccines. 7th ed. Philadelphia: Elsevier; 2018. p. 1114–44. https://doi.org/10.1016/B978-0-323-35761-6.00061-4. Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Effect of live oral attenuated typhoid vaccine, Ty21a, on systemic and terminal ileum mucosal CD4+ T memory responses in humans. Int Immunol. 2018;31(2):101. https://doi.org/10.1093/intimm/dxy070. Booth JS, Patil SA, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Attenuated Oral typhoid vaccine Ty21a elicits Lamina Propria and intra-epithelial lymphocyte tissue-resident effector memory CD8 T responses in the human terminal ileum. Front Immunol. 2019;10:424. https://doi.org/10.3389/fimmu.2019.00424. Booth JS, Goldberg E, Patil SA, Greenwald BD, Sztein MB. Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans. Hum Vaccin Immunother. 2019;15:1–12. Booth JS, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Oral typhoid vaccine Ty21a elicits antigen-specific resident memory CD4(+) T cells in the human terminal ileum lamina propria and epithelial compartments. J Transl Med. 2020;18(1):102. https://doi.org/10.1186/s12967-020-02263-6. Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar DKV, Fraser CM, Faherty CS, Sztein MB, Fiorentino M, Fasano A. Salmonella Typhi colonization provokes extensive transcriptional changes aimed at evading host mucosal immune defense during early infection of human intestinal tissue. EBioMedicine. 2018;31:92–109. https://doi.org/10.1016/j.ebiom.2018.04.005. Kantele A, Hakkinen M, Moldoveanu Z, Lu A, Savilahti E, Alvarez RD, et al. Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect Immun. 1998;66(12):5630–5. https://doi.org/10.1128/IAI.66.12.5630-5635.1998. Vasson MP, Farges MC, Goncalves-Mendes N, Talvas J, Ribalta J, Winklhofer-Roob B, Rock E, Rossary A. Does aging affect the immune status? A comparative analysis in 300 healthy volunteers from France. Austria and Spain Immun Ageing. 2013;10(1):38. https://doi.org/10.1186/1742-4933-10-38. Strindhall J, Skog M, Ernerudh J, Bengner M, Lofgren S, Matussek A, et al. The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish HEXA immune study. Age (Dordr). 2013;35(3):985–91. https://doi.org/10.1007/s11357-012-9400-3. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, Zha X, Li Y, Xu L. Age related human T cell subset evolution and senescence. Immun Ageing. 2019;16(1):24. https://doi.org/10.1186/s12979-019-0165-8. Lin Y, Kim J, Metter EJ, Nguyen H, Truong T, Lustig A, Ferrucci L, Weng NP. Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. Immun Ageing. 2016;13(1):24. https://doi.org/10.1186/s12979-016-0079-7. Derhovanessian E, Larbi A, Pawelec G. Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr Opin Immunol. 2009;21(4):440–5. https://doi.org/10.1016/j.coi.2009.05.012. Booth JS, Patil SA, Ghazi L, Barnes R, Fraser CM, Fasano A, Greenwald BD, Sztein MB. Systemic and terminal ileum mucosal immunity elicited by Oral immunization with the Ty21a typhoid vaccine in humans. Cell Mol Gastroenterol Hepatol. 2017;4(3):419–37. https://doi.org/10.1016/j.jcmgh.2017.08.002. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13(7):843–50. https://doi.org/10.1038/nm1592. Lindenstrom T, Agger EM, Korsholm KS, Darrah PA, Aagaard C, Seder RA, et al. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol. 2009;182(12):8047–55. https://doi.org/10.4049/jimmunol.0801592. Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, Scriba TJ, Mahomed H, Hanekom W, Bart PA, Pantaleo G, Tomaras GD, Rerks-Ngarm S, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Michael NL, Kim JH, Robb ML, O'Connell RJ, Karasavvas N, Gilbert P, C de Rosa S, McElrath MJ, Gottardo R. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol. 2015;33(6):610–6. https://doi.org/10.1038/nbt.3187. Fresnay S, McArthur MA, Magder L, Darton TC, Jones C, Waddington CS, et al. Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans. J Transl Med. 2016;14(1):62. https://doi.org/10.1186/s12967-016-0819-7. Fresnay S, McArthur MA, Magder LS, Darton TC, Jones C, Waddington CS, et al. Importance of Salmonella Typhi-responsive CD8+ T cell immunity in a human typhoid fever challenge model. Front Immunol. 2017;8:208. Burel JG, Apte SH, Groves PL, McCarthy JS, Doolan DL. Polyfunctional and IFN-gamma monofunctional human CD4(+) T cell populations are molecularly distinct. JCI Insight. 2017;2(3):e87499. https://doi.org/10.1172/jci.insight.87499. Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4(+) T cells inhabit the human lungs. Mucosal Immunol. 2018;11(3):654–67. https://doi.org/10.1038/mi.2017.94. Park CO, Fu X, Jiang X, Pan Y, Teague JE, Collins N, Tian T, O'Malley JT, Emerson RO, Kim JH, Jung Y, Watanabe R, Fuhlbrigge RC, Carbone FR, Gebhardt T, Clark RA, Lin CP, Kupper TS. Staged development of long-lived T-cell receptor alphabeta TH17 resident memory T-cell population to Candida albicans after skin infection. J Allergy Clin Immunol. 2018;142(2):647–62. https://doi.org/10.1016/j.jaci.2017.09.042. Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017;46(3):364–78. https://doi.org/10.1016/j.immuni.2017.03.010. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A. 2003;100(25):15053–8. https://doi.org/10.1073/pnas.2433717100. Haynes L, Maue AC. Effects of aging on T cell function. Curr Opin Immunol. 2009;21(4):414–7. https://doi.org/10.1016/j.coi.2009.05.009. Effros RB, Cai Z, Linton PJ. CD8 T cells and aging. Crit Rev Immunol. 2003;23(1–2):45–64. https://doi.org/10.1615/CritRevImmunol.v23.i12.30. Koch S, Solana R, Dela Rosa O, Pawelec G. Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev. 2006;127(6):538–43. https://doi.org/10.1016/j.mad.2006.01.011. Tu W, Rao S. Mechanisms underlying T cell Immunosenescence: aging and Cytomegalovirus infection. Front Microbiol. 2016;7:2111. Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A systematic review: the role of resident memory T cells in infectious diseases and their relevance for vaccine development. Front Immunol. 2018;9:1574. https://doi.org/10.3389/fimmu.2018.01574. Shin H, Iwasaki A. Tissue-resident memory T cells. Immunol Rev. 2013;255(1):165–81. https://doi.org/10.1111/imr.12087. Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41(6):886–97. https://doi.org/10.1016/j.immuni.2014.12.007. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998;396(6712):690–5. https://doi.org/10.1038/25374. Dock J, Ramirez CM, Hultin L, Hausner MA, Hultin P, Elliott J, Yang OO, Anton PA, Jamieson BD, Effros RB. Distinct aging profiles of CD8+ T cells in blood versus gastrointestinal mucosal compartments. PLoS One. 2017;12(8):e0182498. https://doi.org/10.1371/journal.pone.0182498. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, Telera A, Lucchini G, Passeri G, Monti D, Franceschi C, Passeri M. The immune system in extreme longevity. Exp Gerontol. 2008;43(2):61–5. https://doi.org/10.1016/j.exger.2007.06.008. van den Berg SPH, Wong A, Hendriks M, Jacobi RHJ, van Baarle D, van Beek J. Negative effect of age, but not of latent Cytomegalovirus infection on the antibody response to a novel influenza vaccine strain in healthy adults. Front Immunol. 2018;9:82. https://doi.org/10.3389/fimmu.2018.00082. Roukens AH, Soonawala D, Joosten SA, de Visser AW, Jiang X, Dirksen K, de Gruijter M, van Dissel JT, Bredenbeek PJ, Visser LG. Elderly subjects have a delayed antibody response and prolonged viraemia following yellow fever vaccination: a prospective controlled cohort study. PLoS One. 2011;6(12):e27753. https://doi.org/10.1371/journal.pone.0027753. Djennad A, Ramsay ME, Pebody R, Fry NK, Sheppard C, Ladhani SN, Andrews NJ. Effectiveness of 23-Valent polysaccharide pneumococcal vaccine and changes in invasive pneumococcal disease incidence from 2000 to 2017 in those aged 65 and over in England and Wales. EClinicalMedicine. 2018;6:42–50. https://doi.org/10.1016/j.eclinm.2018.12.007. Chelimo K, Embury PB, Sumba PO, Vulule J, Ofulla AV, Long C, et al. Age-related differences in naturally acquired T cell memory to plasmodium falciparum merozoite surface protein 1. PLoS One. 2011;6(9):e24852. https://doi.org/10.1371/journal.pone.0024852. Schulz AR, Malzer JN, Domingo C, Jurchott K, Grutzkau A, Babel N, et al. Low Thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J Immunol. 2015;195(10):4699–711. https://doi.org/10.4049/jimmunol.1500598. McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, et al. T cell responses are better correlates of vaccine protection in the elderly. J Immunol. 2006;176(10):6333–9. https://doi.org/10.4049/jimmunol.176.10.6333. Senda T, Dogra P, Granot T, Furuhashi K, Snyder ME, Carpenter DJ, Szabo PA, Thapa P, Miron M, Farber DL. Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunol. 2019;12(2):378–89. https://doi.org/10.1038/s41385-018-0110-8. Nguyen TH, McAuley JL, Kim Y, Zheng MZ, Gherardin NA, Godfrey DI, Purcell DF, Sullivan LC, Westall GP, Reading PC, Kedzierska K, Wakim LM. Influenza, but not SARS-CoV-2, infection induces a rapid interferon response that wanes with age and diminished tissue-resident memory CD8(+) T cells. Clin Transl Immunology. 2021;10(1):e1242. https://doi.org/10.1002/cti2.1242. Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of Immunosenescence on viral infection. Immunity Vaccine Immunogenicity Immune Netw. 2019;19(6):e37. https://doi.org/10.4110/in.2019.19.e37. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol. 2018;40:83–94. https://doi.org/10.1016/j.smim.2018.10.010. Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR. Latent Cytomegalovirus (CMV) infection does not detrimentally Alter T cell responses in the healthy old, But Increased Latent CMV Carriage Is Related to Expanded CMV-Specific T Cells. Front Immunol. 2017;8:733. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis. 2006;43(9):1143–51. https://doi.org/10.1086/508173. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E. The impact of CMV infection on survival in older humans. Curr Opin Immunol. 2012;24(4):507–11. https://doi.org/10.1016/j.coi.2012.04.002. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol. 2002;37(2–3):445–53. https://doi.org/10.1016/S0531-5565(01)00212-1. Derhovanessian E, Maier AB, Hahnel K, McElhaney JE, Slagboom EP, Pawelec G. Latent infection with cytomegalovirus is associated with poor memory CD4 responses to influenza a core proteins in the elderly. J Immunol. 2014;193(7):3624–31. https://doi.org/10.4049/jimmunol.1303361. Ferreccio C, Levine MM, Rodriguez H, Contreras R. Comparative efficacy of two, three, or four doses of TY21a live oral typhoid vaccine in enteric-coated capsules: a field trial in an endemic area. J Infect Dis. 1989;159(4):766–9. https://doi.org/10.1093/infdis/159.4.766. Sztein MB, Tanner MK, Polotsky Y, Orenstein JM, Levine MM. Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J Immunol. 1995;155(8):3987–93. Booth JS, Toapanta FR, Salerno-Goncalves R, Patil S, Kader HA, Safta AM, et al. Characterization and functional properties of gastric tissue-resident memory T cells from children, adults, and the elderly. Front Immunol. 2014;5:294. Booth JS, Salerno-Goncalves R, Blanchard TG, Patil SA, Kader HA, Safta AM, et al. Mucosal-associated invariant T cells in the human gastric mucosa and blood: role in helicobacter pylori infection. Front Immunol. 2015;6:466. Eiras P, Roldan E, Camarero C, Olivares F, Bootello A, Roy G. Flow cytometry description of a novel CD3−/CD7+ intraepithelial lymphocyte subset in human duodenal biopsies: potential diagnostic value in coeliac disease. Cytometry. 1998;34(2):95–102. https://doi.org/10.1002/(SICI)1097-0320(19980415)34:2<95::AID-CYTO6>3.0.CO;2-B. Salerno-Goncalves R, Fernandez-Vina M, Lewinsohn DM, Sztein MB. Identification of a human HLA-E-restricted CD8+ T cell subset in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol. 2004;173(9):5852–62. https://doi.org/10.4049/jimmunol.173.9.5852.