Affinity labeling of the active site of pig liver NADH-cytochrome b5 reductase by 5′-p-fluorosulfonylbenzoyladenosine

Journal of Protein Chemistry - Tập 5 - Trang 133-145 - 1986
Shiuan Chen1,2, Mitsuru Haniu1, Takashi Iyanagi3, John E. Shively1
1Division of Immunology, Beckman Research Institute of the City of Hope, Duarte
2School of Pharmacy, University of Southern California, Los Angeles
3Division of Biochemistry, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan

Tóm tắt

Lysosome-solubilized pig liver NADH-cytochrome b5 reductase is inactivated by 5′-p-fluorosulfonylbenzoyladenosine (5′-FSBA) following pseudo-first-order kinetics. A double reciprocal plot of 1/Kobs versus 1/[5′-FSBA] yields a straight line with a positiveY intercept, indicative of reversible binding of the analogue prior to an irreversible incorporation.Kdor the initial reversible enzyme-analogue complex is estimated at 185 µM withK2=0.22 min−1 (atpH 8.0 and 25°C). A stoichiometry of 1.2 moles of analogue bound/mole of enzyme at 100% inactivation has been determined from incorporation studies using 5′-p-fluorosulfonylbenzoyl-[14C]adenosine. The irreversible inactivation as well as the covalent incorporation could be completely prevented by the presence of NADH, the substrate of enzyme, during the incubation. Four 5′-FSBA-labeled peptides were isolated by reverse-phase high-performance liquid chromatography of tryptic digest of the modified NADH-cytochrome b5 reductase and their amino acid sequences were determined. These peptides appear to be related to the NADH binding site of the enzyme.

Tài liệu tham khảo

Chen, S., and Guillory, R. J. (1981).J. Biol. Chem. 256, 8318–4323. Cole, S. T. (1982).Eur. J. Biochem. 122, 479–484. Colman, R. F., Pal, P. K., and Wyatt, J. L. (1977).Meth. Enzymol. 46, 240–248. Edman, P., and Begg, G. (1977).Eur. J. Biochem. 1, 80–91. Eklund, H., Branden, C. I., and Jornvall, H. (1976).J. Mol. Biol. 102, 61–73. Esch, F. S., and Allison, W. S. (1978).J. Biol. Chem. 253, 6100–6106. Haniu, M., Iyanayi, T., Legesse, K., and Shively, J. E. (1984).J. Biol. Chem. 259, 13703–13711. Hofsteenge, J., Vereijken, J. M., Weijer, W. J., Brintema, J. J., Wierenga, R. K., and Drenth, J. (1980).Eur. J. Biochem. 113, 141–150. Hunkapiller, M. W., and Hood, L. E. (1978).Biochemistry 17, 2124–2133. Iyanagi, T., Watanabe, S., and Anan, K. F. (1984).Biochemistry 23, 1418–1425. Jones, G. M. T., and Harris, J. I. (1972).FEBS Lett. 22, 185–189. Kamps, M. P., Taylor, S. S., and Setton, B. M. (1984).Nature 310, 589–591. Likos, J. J., Hess, E., and Colman, R. F. (1980).J. Biol. Chem. 255, 9788–9398. Loverde, A., and Strittmatter, P. (1968).J. Biol. Chem. 243, 5779–5787. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275. Minakami, S., Ringler, R. L., and Singer, T. P. (1962).J. Biol. Chem. 237, 569–576. Porter, T. D., and Kasper, C. E. (1985).Fed. Proc. 44(4), 4709. Saradambal, K. V., Bednar, R. A., and Colman, R. F. (1981).J. Biol. Chem. 256, 11866–11872. Schafer, D. A., and Hultquist, D. E. (1980).Biochem. Biophys. Res. Commun. 95, 381–387. Shively, J. E. (1981).Meth. Enzymol. 79, 31–48. Stephens, P. E., Lewis, H. M., Darlison, M. G., and Guest, J. R. (1983).Eur. J. Biochem. 135, 519–527. Strittmatter, P. (1959).J. Biol. Chem. 234, 2661–2664. Strittmatter, P. (1961).J. Biol. Chem. 236, 2336–2341. Takesue, S., and Omura, T. (1970).J. Biochem. 67, 267–276. Yao, Y., Tamura, T., Wada, K., Matsubara, H., and Kodo, K. (1984).J. Biochem. 95, 1513–1516. Young, I. G., Rogers, R. L., Campbell, H. D., Jaworowski, A., and Shaw, D. C. (1981).Eur. J. Biochem. 116, 165–170. Yuan, P. M., Pand, H., Clark, B. R., and Shively, J. E. (1982).Anal. Biochem. 120, 289–301. Yubisui, T., Miyata, T., Iwanaga, S., Tamura, M., Yoshida, S., Takeshita, M., and Nakajima, H. (1984).J. Biochem. 96, 579–582. Vereijken, J. M., Hofsteege, J., Buk, H. J., and Beintema, J. J. (1980).Eur. J. Biochem. 113, 151–157.