Aeration Process in Bioreactors as the Main Energy Consumer in a Wastewater Treatment Plant. Review of Solutions and Methods of Process Optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Spencer, D., and Murdoch, F. (2002). The Role of Respirometry in Maximising Aerobic Treatment Plant Efficiency, Strathkelvin Instruments Ltd.
Bodington, V., Langford, A., Dooley, M., and Diamond, K. (2009). Cardiff WWTW Aeration Optimisation through Scientific Control, Strathkelvin Instruments Ltd.
Godniok, 2010, Metodyczne aspekty analizy aktywności oddechowej mikroorganizmów osadu czynnego w odniesieniu do możliwości optymalizacji pracy biologicznej oczyszczalni ścieków/ Methodical aspects of analysis of respiratory activity of microorganisms in the activated sludge, in reference to the possibility of biological treatment plant work optimization, Prace Naukowe GIG, 1, 5
2012, Dezintegracja niskotemperaturowa jako skuteczny sposób kondycjonowania osadów ściekowych, Polska Inżynieria Środowiska, Volume 99, 131
2014, Biologiczne oczyszczanie ścieków. Sztuka napowietrzania, Mag. Instal., 187, 46
Dereszewska, 2012, Zastosowanie sondy do pomiaru zawartości azotu amonowego i azotanowego jako element sterowania procesem oczyszczania ścieków/Implementation of the ammonium and nitrate sensor as an element of wastewater treatment process control, Econ. Menag., 1, 127
Bennett, 2011, Wastewater treatment: Bubbling up for major energy saving, Filtr. Separat., 48, 42, 10.1016/S0015-1882(11)70168-9
Water Environment Federation (2009). Energy Conservation in Wastewater Treatment Facilities—Manual and Practice, WEF Press. No 32.
Turunen, 2018, A decision support tool for selecting the optimal sewage sludge treatment, Chemosphere, 193, 521, 10.1016/j.chemosphere.2017.11.052
Arnell, 2014, Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs, Sci. Total Environ., 466–467, 616
Mannina, 2016, Greenhouse gas emissions from wastewater treatment plants on a plantwide scale: Sensitivity and uncertainty analysis, J. Environ. Eng., 142, 04016017, 10.1061/(ASCE)EE.1943-7870.0001082
Mannina, 2016, Greenhouse gases from wastewater treatment—A review of modelling tools, Sci. Total Environ., 551–552, 254, 10.1016/j.scitotenv.2016.01.163
Barbu, 2017, Global evaluation of wastewater treatment plants control strategies including CO2 emissions, IFAC Pap OnLine, 50, 12956, 10.1016/j.ifacol.2017.08.1800
Solon, 2017, Plantwide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control an operational strategies, Water Res., 113, 97, 10.1016/j.watres.2017.02.007
Arnell, 2017, Multiobjective performance assessment of wastewater treatment plants combining plant-wide process models and life cycle assessment, J. Water Clim. Chang., 8, 715, 10.2166/wcc.2017.179
Zaborowska, 2017, Strategies for achieving energy neutrality in biological nutrient removal systems—A case study of the Slupsk WWTP (northern Poland), Water Sci. Technol., 75, 727, 10.2166/wst.2016.564
Dominguez, 2006, Evolution of a wastewater treatment plant challenges traditional design concepts, Water Res., 40, 1389, 10.1016/j.watres.2006.01.034
Drewnowski, 2018, Model based evaluation of plant improvement at a large wastewater treatment plant (WWTP), J. Environ. Sci. Health A, 53, 1, 10.1080/10934529.2018.1438821
Drewnowski, 2019, The evaluation of COD fractionation and modeling as a key factor for appropriate optimization and monitoring of modern cost-effective activated sludge systems, J. Environ. Sci. Health A, 54, 1, 10.1080/10934529.2019.1592531
Heidrich, 2006, Wybór systemu napowietrzania w procesie oczyszczania ścieków metoda osadu czynnego, Inż. Ekol., 14, 12
Łomotowski, J., and Szpindor, A. (1999). Nowoczesne Systemy Oczyszczania Ścieków, Arkady.
Bever, J., Stein, A., and Teichmann, H. (1997). Zaawansowane Metody Oczyszczania Ścieków, Oficyna Wydawnicza Projprzem-Eko.
Longo, 2016, Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement, Appl. Energy, 179, 1251, 10.1016/j.apenergy.2016.07.043
Guerrini, A., Romano, G., and Indipendenza, A. (2017). Energy Efficiency Drivers in Wastewater Treatment Plants: A Double Bootstrap DEA Analysis. Sustainability, 9.
Janiak, 2012, Stopień wykorzystania tlenu i czynniki na niego wpływające: Część I/ Oxygen transfer efficiency and its influencing factors: Part 1, Forum Eksploatatora, 4, 44
German, A.T.V. (1996). Rules and Standards. ATV M 209E, Measurement of the Oxygen Transfer Inactivated Sludge Aeration Tanks with Clean Water and in Mixed Liquor, Gesellschaft zur Förderung der Abwassertechnik e.V. (GFA).
Chern, 2001, Effects of impurities on oxygen transfer rates in diffused aeration system, Water Res., 35, 3041, 10.1016/S0043-1354(01)00031-8
US EPA (1983). Development of Standard Procedures for Evaluating Oxygen Transfer Devices, EPA-600/2-83-102.
Stenstrom, 1981, Effects of α, β and θ factor upon the design, specification and operation of aeration systems, Water Res., 15, 643, 10.1016/0043-1354(81)90156-1
Downing, 1960, The performance of mechanical aerators, J. Inst. Sewage Purif., 3, 231
Eckenfelder, 1956, Effect of various organic substances on oxygen absorption efficiency, Sewage Ind. Wastes, 28, 1357
Fisher, 1999, Effect of anaerobic anoxic selectors on oxygen transfer in wastewater, Wat. Environ. Res., 71, 84, 10.2175/106143099X121661
Hwang, H.J., and Stenstrom, M.K. (1979). The Effect of Surface Active Agent on Oxygen Transfer, University of California. UCLA-ENG-79-30.
Krampe, 2003, Oxygen transfer into activated sludge with high MLSS concentrations, Water Sci. Technol., 47, 297, 10.2166/wst.2003.0618
Rosso, 2008, Aeration of large-scale municipal wastewater treatment plants state of the art, Water Sci. Technol., 57, 973, 10.2166/wst.2008.218
Wagner, 2003, Investigation of oxygen transfer rates in full scale membrane bioreactors, Water Sci. Technol., 47, 313, 10.2166/wst.2003.0620
2001, Praxiserfahrungen mit dem ATV-Merkblatt M 209 und Vorstellung des neuen europäischen Norm-Entwurfes DIN EN 12255-15 zur Messung der Sauerstoffzufuhr in Reinwasser, Schriftenreihe WAR, 134, 57
Piotrowski, 2018, Wielopoziomowy system sterowania stężeniem tlenu I wyznaczania trajektorii zadanej stężenia tlenu w biologicznej oczyszczalni ścieków/Multilevel control system for dissolved oxygen control and determining the set point trajectory of dissolved oxygen in a biological watewater treatment plant, Pomiary Automatyka Robotyka, 4, 19, 10.14313/PAR_230/19
US EPA (1989). Fine Pore Aeration Systems-Design Manual, EPA/625/1-89/023.
Hung, 2001, The effect of acid cleaning on a fine pore ceramic diffuser aeration, system, Water Sci. Technol., 44, 211, 10.2166/wst.2001.0772
Szetela, R., Janiak, K., Balbierz, P., and Knap, M. (2012). Optymalizacja pracy systemu napowietrzania bloków biologicznych pod kątem minimalizacji kosztów napowietrzania Wrocławskiej Oczyszczalni Ścieków cz. 3, Raport serii SPR nr 7/2012, Instytut Inżynierii Ochrony Środowiska, Politechnika Wrocławska.
Janiak, 2012, Stopień wykorzystania tlenu i czynniki na niego wpływające: Część II Zarastanie dyfuzorów/ Oxygen transfer efficiency and its influencing factors Part 2: Diffuser’s fouling, Forum Eksploatatora, 5, 30
Frey, 2004, Clogging and cleaning of fine-pore membrane diffusers, Water Sci. Technol., 50, 69, 10.2166/wst.2004.0419
Hansen, 2004, On the shrinking and hardening of EPDM rubber membranes in water sanitation filtration tanks, Eng. Fail. Anal., 11, 361, 10.1016/j.engfailanal.2003.06.003
Wagner, 2004, Biological coating of EPDM-membranes of fine bubble diffusers, Water Sci. Technol., 50, 79, 10.2166/wst.2004.0421
Libra, 2005, Evaluation of ceramic and membrane diffusers under operating conditions with the dynamic of gas method, Water Environ. Res., 77, 447, 10.2175/106143005X67359
Szetela, R., Janiak, K., Balbierz, P., and Knap, M. (2011). Ekspertyza techniczna—Badania laboratoryjne stopnia wykorzystania tlenu oraz strat ciśnienia dyfuzorów wymontowanych z nowo wybudowanych reaktorów tlenowych Wrocławskiej Oczyszczalni Ścieków, Instytut Inżynierii Ochrony Środowiska, Politechnika Wrocławska.
Thomas, 2006, Systemy Oxy-Dep Vsa, Nowe rewolucyjne podejście do kwestii napowietrzania w procesie oczyszczania ścieków, Inży. Ekol., 14, 17
(1999). EPA 832-F-99-065 Wastewater Technology Fact Sheet—Fine Bubble Aeration.
Ovezea, 2009, Saving energy: Using fine bubble diffusers, Filtr. Sep., 46, 24, 10.1016/S0015-1882(09)70088-6
Roman, 2014, Analysis of oxygen requirements and transfer efficiency in a wastewater treatment plant, Int. J. Latest Res. Sci. Technol., 3, 30
Asvapathanagul, 2016, Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge, Water Res., 90, 317, 10.1016/j.watres.2015.12.011
Sobhani, 2017, Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity, Water Res., 111, 127, 10.1016/j.watres.2016.12.027
Sadecka, 2011, Modele biokinetyczne ASM/Biokinetic models ASM, Zeszyty Naukowe. Inżynieria Środowiska Uniwersytet Zielonogórski, 141, 113
Henze, M., Gujer, W., Mino, T., and Loosdrecht, M. (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, IWA Publishing. Edited by IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment.
Olsson, G., and Newell, B. (1999). Wastewater Treatment Systems. Modeling, Diagnosis and Control, IWA Publishing.
Szetela, R. (1990). Model Dynamiczny Oczyszczalni ścieków z Osadem Czynnym, Wydawnictwo Politechniki Wrocławskiej. Prace Naukowe Instytutu Ochrony Środowiska Politechniki Wrocławskiej, 64, Monografie 32.
Urban, 2007, Calibration of the activated sludge model with genetic algorithms. Part i. Calibration results, Environ. Prot. Eng., 33, 31
Cawley, 2007, Predictive uncertainty in environmental modelling, Neural Netw., 20, 537, 10.1016/j.neunet.2007.04.024
Bsdys, M.A., and Díaz Maíquez, J. (2002, January 21–26). Application of Fuzzy Model Predictive Control to the Dissolved Oxygen Concentration Tracking in an Activated Sludge Process. Proceedings of the 15th IFAC World Congress, Barcelona, Spain.
Szetela, 2002, Modyfikacja obecnej postaci modelu osadu czynnego ASM 2d/ Modification of the present form of the ASM 2d acivated sludge model, Ochr. Środ., 1, 3
Henze, 1999, Activated sludge model No.2D, ASM2D, Water Sci. Technol., 39, 165, 10.2166/wst.1999.0036
Winkler, 2001, A New approach towards model ling of the carbon degradation cycle AT two-stage activated sludge plants, Water Sci. Technol., 43, 19, 10.2166/wst.2001.0380
Rieger, 2001, The EWAG BIO-P module for Activated Sludge Model No. 3, Water Res., 35, 3887, 10.1016/S0043-1354(01)00110-5
James, A. (1978). A mathematical model for bacterial growth and substrate utilisation in the activated-sludge process. Mathematical Models in Water Pollution Control, John Wiley and Sons.
Chambers, 1988, Optimisation and Uprating of Activated Sludge Plants by Efficient Process Design, Water Sci. Technol., 20, 121, 10.2166/wst.1988.0160
Murnleitner, 1997, An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal, Biotechnol. Bioeng., 54, 434, 10.1002/(SICI)1097-0290(19970605)54:5<434::AID-BIT4>3.0.CO;2-F
Heijnen, 1999, Modelling biological phosphorus and nitro gen removal in a full scale activated sludge process, Water Res., 33, 3459, 10.1016/S0043-1354(99)00064-0
Szabat, 2009, Zastosowanie logiki rozmytej do sterowania napędowymi układami napowietrzania komór tlenowych w oczyszczalni ścieków/Application of the fuzzy logic to control the electrical blowers in the sewage treatment plant, Prace Naukowe IMNiPE Politechniki Wrocławskiej, 63, 341
Kalker, 1999, Fuzzy Control of Aeration in an Activated Sludge Wastewater Treatment Plant: Design, Simulation and Evaluation, Water Sci. Technol., 4, 71, 10.2166/wst.1999.0191
Stare, 2007, Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: Simulation study, Water Res., 41, 2004, 10.1016/j.watres.2007.01.029
Borowa, 2007, Modeling of wastewater treatment plant for monitoring and control purposes by state-space wavelet networks, IJCCC, 2, 121
Amand, 2014, Aeration Control with Gain Scheduling in a Full-scale Wastewater Treatment Plant, IFAC Proc. Vol., 47, 7146, 10.3182/20140824-6-ZA-1003.01892
Regmi, 2014, Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation, Water Res., 57, 162, 10.1016/j.watres.2014.03.035
Kaelin, 2009, Extension of ASM3 for two-step nitrification and denitrification and its calibration and validation with batch tests and pilot scale data, Water Res., 43, 1680, 10.1016/j.watres.2008.12.039
Sobczuk, H., and Kowalska, B. (2018). Improving the energy balance in wastewater treatment plants by optimization of aeration control and application of new technologies. Water Supply and Wastewater Disposal, LUT.
Maktabifard, 2018, Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production, Rev. Environ. Sci. Biotechnol., 17, 655, 10.1007/s11157-018-9478-x
(2019, May 05). U.S. Municipal Solid Waste Sector Action Plan. Available online: https://www.globalmethane.org/documents/landfills_cap_usa.pdf.
Piao, 2016, Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants, J. Clean. Prod., 113, 325, 10.1016/j.jclepro.2015.11.012
Guerrini, 2018, Economic of scale and density in the Italian water industry: A stochastic frontier approach, Util. Policy, 52, 103, 10.1016/j.jup.2018.04.003
Daelman, 2013, Methane and nitrous oxide emissions from municipal wastewater treatment—Results from a long-term study, Water Sci. Technol., 67, 2350, 10.2166/wst.2013.109
Remy, 2013, Identifying energy and carbon footprint optimization potentials of a sludge treatment line with life cycle assessment, Water Sci. Technol., 67, 63, 10.2166/wst.2012.529
Pepperell, 2014, Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data, Water Sci. Technol., 69, 451, 10.2166/wst.2013.572
Mamais, 2015, Wastewater treatment process impact on energy savings and greenhouse gas emissions, Water Sci. Technol., 71, 303, 10.2166/wst.2014.521
Bao, 2016, Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China, Int. Biodeterior. Biodegrad., 108, 108, 10.1016/j.ibiod.2015.11.028
Wang, 2016, Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa, Appl. Energy, 184, 873, 10.1016/j.apenergy.2016.07.061
Evangelisti, 2014, Life cycle assessment of energy from waste via anaerobic digestion: A UK case study, Waste Manag., 34, 226, 10.1016/j.wasman.2013.09.013
Arashiro, 2018, Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery, Sci. Total Environ., 622–623, 1118, 10.1016/j.scitotenv.2017.12.051
Polruang, 2018, A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs, J. Clean. Prod., 172, 635, 10.1016/j.jclepro.2017.10.183
2011, Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach, Sci. Total Environ., 409, 2693, 10.1016/j.scitotenv.2011.04.018
2012, Assessing the efficiency of wastewater treatment plants in an uncertain context: A DEA with tolerances approach, Environ. Sci. Policy, 18, 34, 10.1016/j.envsci.2011.12.012
2014, Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions, Resour. Energy Econ., 38, 125, 10.1016/j.reseneeco.2014.07.001
Alfonsin, 2016, Beyond the conventional life cycle inventory in wastewater treatment plants, Sci. Total Environ., 553, 71, 10.1016/j.scitotenv.2016.02.073
Hydromantis ESS, Inc. (2017). GPS-X Technical Reference, Hydromantis ESS, Inc.