Advances in spring leaf phenology are mainly triggered by elevated temperature along the rural-urban gradient in Beijing, China

International Journal of Biometeorology - Tập 67 Số 5 - Trang 777-791 - 2023
Yuebo Su1,2, Xüming Wang3, Cheng Gong2,4, Li Chen5, Bowen Cui2,4, Binbin Huang2,4, Xiaoke Wang2,4
1Shenzhen Academy of Environmental Sciences, Shenzhen, China
2State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
3State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Science, Fujian Normal University, Fuzhou, China
4University of Chinese Academy of Sciences, Beijing, China
5Torch High Technology Industry Development Center, Ministry of Science & Technology, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amitrano C, Arena C, Rouphael Y, De Pascale S, De Micco V (2019) Vapour pressure deficit: the hidden driver behind plant morphofunctional traits in controlled environments. Ann Appl Biol 175(3):313–325. https://doi.org/10.1111/aab.12544

Anderson DB (1936) Relative humidity or vapor pressure deficit. Ecology 17(2):277–282. https://doi.org/10.2307/1931468

Atkin OK, Loveys B, Atkinson LJ, Pons T (2006) Phenotypic plasticity and growth temperature: understanding interspecific variability. J Exp Bot 57(2):267–281. https://doi.org/10.1093/jxb/erj029

Bai J, Ge Q, Dai J (2011) The response of first flowering dates to abrupt climate change in Beijing. Adv in Atmos Sci 28(3):564–572. https://doi.org/10.1007/s00376-010-9219-8

Bucher SF, König P, Menzel A, Migliavacca M, Ewald J, Römermann C (2018) Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecol Evol 8(2):1147–1158. https://doi.org/10.1002/ece3.3720

Buckley LB, Graham SI, Nufio CR (2021) Grasshopper species’ seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. J Anim Ecol 90(5):1252–1263. https://doi.org/10.1111/1365-2656.13451

Chen X, Tian Y, Xu L (2015) Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China’s temperate zone. Int J Biometeorol 59(10):1437–1452. https://doi.org/10.1007/s00484-015-0955-4

Chen Y, Song Y (2011) Comparative analysis between rate of urbanization and development level of township enterprise in China. In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC) (pp. 250-253). IEEE. https://doi.org/10.1109/AIMSEC.2011.6010207

Chen Y, Wang X, Jiang B, Li L (2018) The leaf phenophase of deciduous species altered by land pavements. Int J Biometeorol 62(6):949–959. https://doi.org/10.1007/s00484-018-1497-3

Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH (2019) The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol Monogr 89(1):e01337. https://doi.org/10.1002/ecm.1337

Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365. https://doi.org/10.1016/j.tree.2007.04.003

Dunjić J, Milošević D, Kojić M, Savić S, Lužanin Z, Šećerov I, Arsenović D (2021) Air humidity characteristics in “Local Climate Zones” of Novi Sad (Serbia) Based on Long-Term Data. ISPRS Int J Geoinf 10(12):810. https://doi.org/10.3390/ijgi10120810

Eley YL, Hren MT (2018) Reconstructing vapor pressure deficit from leaf wax lipid molecular distributions. Sci Rep UK 8(1):1–8. https://doi.org/10.1038/s41598-018-21959-w

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

Fajardo A, Siefert A (2018) Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99(5):1024–1030. https://doi.org/10.1002/ecy.2194

Fitchett JM, Grab SW, Thompson DI (2015) Plant phenology and climate change: progress in methodological approaches and application. Prog Phys Geogr 39(4):460–482. https://doi.org/10.1177/0309133315578940

Fu Y, Li X, Zhou X, Geng X, Guo Y, Zhang Y (2020) Progress in plant phenology modeling under global climate change. Sci China Earth Sci 63(9):1237–1247. https://doi.org/10.1007/s11430-019-9622-2

Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23(11):1255–1263. https://doi.org/10.1111/geb.12210

Ge Q, Dai J, Liu J, Zhong S, Liu H (2013) The effect of climate change on the fall foliage vacation in China. Tour Manag 38:80–84. https://doi.org/10.1016/j.tourman.2013.02.020

Geng X, Fu YH, Hao F, Zhou X, Zhang X, Yin G, Vitasse Y, Piao S, Niu K, De Boeck HJ (2020) Climate warming increases spring phenological differences among temperate trees. Glob Chang Biol 26(10):5979–5987. https://doi.org/10.1111/gcb.15301

George K, Ziska LH, Bunce JA, Quebedeaux B (2007) Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos Environ 41(35):7654–7665. https://doi.org/10.1016/j.atmosenv.2007.08.018

Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760. https://doi.org/10.1126/science.1150195

Guo L, Dai J, Ranjitkar S, Xu J, Luedeling E (2013) Response of chestnut phenology in China to climate variation and change. Agric For Meteorol 180:164–172. https://doi.org/10.1016/j.agrformet.2013.06.004

Güsewell S, Furrer R, Gehrig R, Pietragalla B (2017) Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob Chang Biol 23(12):5189–5202. https://doi.org/10.1111/gcb.13781

Helbig M, Waddington JM, Alekseychik P, Amiro BD, Aurela M, Barr AG, Black TA, Blanken PD, Carey SK, Chen J (2020) Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat Clim Change 10(6):555–560. https://doi.org/10.5281/zenodo.3653056

Hua L, Ma Z, Guo W (2008) The impact of urbanization on air temperature across China. Theor Appl Climatol 93(3):179–194. https://doi.org/10.1007/s00704-007-0339-8

Huang X, Hao L, Sun G, Yang ZL, Li W, Chen D (2022a) Urbanization aggravates effects of global warming on local atmospheric drying. Geophys Res Lett 49(2):e2021GL095709. https://doi.org/10.1029/2021GL095709

Huang X, Jin K, Chen D, Zheng Q, Hao L (2022b) Urbanization altered atmospheric humidity diurnally and seasonally through ecohydrological processes in five urban agglomerations in China. Environ Res Lett 17(8):084032. https://doi.org/10.5281/zenodo.6342673

Hulme PE (2011) Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytol 189(1):272–281. https://doi.org/10.1111/j.1469-8137.2010.03446.x

Jänicke B, Meier F, Fenner D, Fehrenbach U, Holtmann A, Scherer D (2017) Urban–rural differences in near-surface air temperature as resolved by the Central Europe Refined analysis (CER): sensitivity to planetary boundary layer schemes and urban canopy models. Int J Climatol 37(4):2063–2079. https://doi.org/10.1002/joc.4835

Jochner S, Alves-Eigenheer M, Menzel A, Morellato LPC (2013) Using phenology to assess urban heat islands in tropical and temperate regions. Int J Climatol 33(15):3141–3151. https://doi.org/10.1002/joc.3651

Jochner S, Menzel A (2015) Urban phenological studies-past, present, future. Environ Pollut 203:250–261. https://doi.org/10.1016/j.envpol.2015.01.003

Johnson MT, Thompson KA, Saini HS (2015) Plant evolution in the urban jungle. Am J Bot 102(12):1951–1953. https://doi.org/10.3732/ajb.1500386

Jolly WM, Nemani R, Running SW (2005) A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Chang Biol 11(4):619–632. https://doi.org/10.1111/j.1365-2486.2005.00930.x

König P, Tautenhahn S, Cornelissen JHC, Kattge J, Bönisch G, Römermann C (2018) Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Glob Ecol Biogeogr 27(3):310–321. https://doi.org/10.1111/geb.12696

Lahr EC, Dunn RR, Frank SD (2018) Getting ahead of the curve: cities as surrogates for global change. P Roy Soc B-Biol Sci 285(1882):20180643. https://doi.org/10.1098/rspb.2018.0643

Langsrud Ø (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Stat Comput 13(2):163–167. https://doi.org/10.1023/A:1023260610025

Li D, Stucky BJ, Deck J, Baiser B, Guralnick RP (2019) The effect of urbanization on plant phenology depends on regional temperature. Nat Ecol Evol 3(12):1661–1667. https://doi.org/10.1038/s41559-019-1004-1

Li Q, Huang J, Jiang Z, Zhou L, Chu P, Hu K (2014) Detection of urbanization signals in extreme winter minimum temperature changes over Northern China. Clim Change 122(4):595–608. https://doi.org/10.1007/s10584-013-1013-z

Li X, Fan W, Wang L, Luo M, Yao R, Wang S, Wang L (2021) Effect of urban expansion on atmospheric humidity in Beijing-Tianjin-Hebei urban agglomeration. Sci Total Environ 759:144305. https://doi.org/10.1016/j.scitotenv.2020.144305

Liang S, Shi P, Li H (2016) Urban spring phenology in the middle temperate zone of China: dynamics and influence factors. Int J Biometeorol 60(4):531–544. https://doi.org/10.1007/s00484-015-1049-z

Liu W, Ji C, Zhong J, Jiang X, Zheng Z (2007) Temporal characteristics of the Beijing urban heat island. Theor Appl Climatol 87(1):213–221. https://doi.org/10.1007/s00704-005-0192-6

Lu P, Yu Q, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138(1-4):120–131. https://doi.org/10.1016/j.agrformet.2006.04.002

Luo M, Lau NC (2019) Urban expansion and drying climate in an urban agglomeration of East China. Geophys Res Lett 46(12):6868–6877. https://doi.org/10.1029/2019GL082736

Meier U (2003) Phenological growth stages. In: Phenology: an integrative environmental science. Springer, pp 269–283

Meili N, Paschalis A, Manoli G, Fatichi S (2022) Diurnal and seasonal patterns of global urban dry islands. Environ Res Lett 17(5):054044. https://doi.org/10.1088/1748-9326/ac68f8

Meng L, Zhou Y, Li X, Asrar GR, Mao J, Wanamaker AD Jr, Wang Y (2020) Divergent responses of spring phenology to daytime and nighttime warming. Agric For Meteorol 281:107832. https://doi.org/10.1016/j.agrformet.2019.107832

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urban Ecosyst 9(3):243–257. https://doi.org/10.1007/s11252-006-9354-2

Ojeh VN, Balogun A, Okhimamhe A (2016) Urban-rural temperature differences in Lagos. Climate 4(2):29. https://doi.org/10.3390/cli4020029

Ouyang Z, Sciusco P, Jiao T, Feron S, Lei C, Li F, John R, Fan P, Li X, Williams CA (2022) Albedo changes caused by future urbanization contribute to global warming. Nat Commun 13(1):1–9. https://doi.org/10.1038/s41467-022-31558-z

Peng J, Zhao S, Liu Y, Tian L (2016) Identifying the urban-rural fringe using wavelet transform and kernel density estimation: a case study in Beijing City, China. Environ Model Software 83:286–302. https://doi.org/10.1016/j.envsoft.2016.06.007

Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019) Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol 25(6):1922–1940. https://doi.org/10.1111/gcb.14619

Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong S-J (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6(1):1–8. https://doi.org/10.1038/ncomms7911

Pickett ST, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin E, Kaushal SS, Marshall V, McGrath BP, Nilon CH (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92(3):331–362. https://doi.org/10.1016/j.jenvman.2010.08.022

Pistón N, de Bello F, Dias AT, Götzenberger L, Rosado BH, de Mattos EA, Salguero-Gómez R, Carmona CP (2019) Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J Ecol 107(5):2317–2328. https://doi.org/10.1111/1365-2745.13190

Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191(4):926–941. https://doi.org/10.1111/j.1469-8137.2011.03803.x

Primack RB, Gallinat AS (2016) Spring budburst in a changing climate. Am Sci 104(2):102–109

Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe–differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44(2):60–66. https://doi.org/10.1007/s004840000062

Rosbakh S, Hartig F, Sandanov DV, Bukharova EV, Miller TK, Primack RB (2021) Siberian plants shift their phenology in response to climate change. Glob Chang Biol 27(18):4435–4448. https://doi.org/10.1111/gcb.15744

Seager R, Hooks A, Williams AP, Cook B, Nakamura J, Henderson N (2015) Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J Appl Meteorol Clim 54(6):1121–1141. https://doi.org/10.1175/JAMC-D-14-0321.1

Shen M, Piao S, Chen X, An S, Fu YH, Wang S, Cong N, Janssens IA (2016) Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob Chang Biol 22(9):3057–3066. https://doi.org/10.1111/gcb.13301

Shen M, Wang S, Jiang N, Sun J, Cao R, Ling X, Fang B, Zhang L, Zhang L, Xu X (2022) Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat Rev Earth Env:1–19. https://doi.org/10.1038/s43017-022-00340-6

Shen X, Liu B, Henderson M, Wang L, Wu Z, Wu H, Jiang M, Lu X (2018) Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric For Meteorol 259:240–249. https://doi.org/10.1016/j.agrformet.2018.05.006

Shustack DP, Rodewald AD, Waite TA (2009) Springtime in the city: exotic shrubs promote earlier greenup in urban forests. Biol Invasions 11(6):1357–1371. https://doi.org/10.1007/s10530-008-9343-x

Su Y, Wang X, Wang X, Cui B, Sun X (2019) Leaf and male cone phenophases of Chinese pine (Pinus tabulaeforrnis Carr.) along a rural-urban gradient in Beijing, China. Urban For Urban Gree 42:61–71. https://doi.org/10.1016/j.ufug.2019.05.009

Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7(8):e01436. https://doi.org/10.1002/ecs2.1436

Tao Z, Ge Q, Wang H, Dai J (2015) Phenological basis for determination of ornamental tourism season in China (in Chinese with English abstract). Acta Geogr Sin 70(1):85–96. https://doi.org/10.11821/dlxb201501007

Varquez AC, Kanda M (2018) Global urban climatology: a meta-analysis of air temperature trends (1960–2009). Npj Clim Atmos Sci 1(1):1–8. https://doi.org/10.1038/s41612-018-0042-8

Wang H, Zhong S, Tao Z, Dai J, Ge Q (2019a) Changes in flowering phenology of woody plants from 1963 to 2014 in North China. Int J Biometeorol 63(5):579–590. https://doi.org/10.1007/s00484-017-1377-2

Wang J, Hutyra L, Li D, Friedl M (2017) Gradients of atmospheric temperature and humidity controlled by local urban land-use intensity in Boston. J Appl Meteorol Climatol 56(4):817–831. https://doi.org/10.1175/JAMC-D-16-0325.1

Wang L, Han X, Yin Q, Wang G, Xu J, Chai Y, Yue M (2021) Differences in leaf phenological traits between trees and shrubs are closely related to functional traits in a temperate forest. Acta Oecol 112:103760. https://doi.org/10.1016/j.actao.2021.103760

Wang X, Xiao J, Li X, Cheng G, Ma M, Zhu G, Altaf Arain M, Andrew Black T, Jassal RS (2019b) No trends in spring and autumn phenology during the global warming hiatus. Nat Commun 10(1):1–10. https://doi.org/10.1038/s41467-019-10235-8

White MA, Nemani RR, Thornton PE, Running SW (2002) Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5(3):260–273. https://doi.org/10.1007/s10021-001-0070-8

Wohlfahrt G, Tomelleri E, Hammerle A (2019) The urban imprint on plant phenology. Nat Ecol Evol 3(12):1668–1674. https://doi.org/10.1038/s41559-019-1017-9

Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9(5):287–294. https://doi.org/10.1890/100033

Wolkovich EM, Cook BI, Allen JM, Crimmins T, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485(7399):494–497. https://doi.org/10.1038/nature11014

Wu DX, Wei W, Zhang S (2007) Protocols for standard biological observation and measurement in terrestrial ecosystems. China Environmental Science Press, Beijing, pp 70–75 (In Chinese)

Xie Z, Zhu W, He B, Qiao K, Zhan P, Huang X (2022) A background-free phenology index for improved monitoring of vegetation phenology. Agric For Meteorol 315:108826. https://doi.org/10.1016/j.agrformet.2022.108826

Xing X, Zhang M, Li K, Hao P, Dong L (2022) Spatial heterogeneity of first flowering date in Beijing’s main urban area and its response to urban thermal environment. Int J Biometeorol:1–26. https://doi.org/10.1007/s00484-022-02322-1

Yan T, Fu Y, Campioli M, Peñuelas J, Wang X (2021) Divergent responses of phenology and growth to summer and autumnal warming. Glob Chang Biol 27(12):2905–2913. https://doi.org/10.1111/gcb.15586

Yu P, Tong X, Li J, Zhang J, Liu P, Xie H (2021) Simulation analysis on phenology of woody plants in the warm-temperate region of China (in Chinese with English abstract). J Beijing For Univ 43(11):28–39. https://doi.org/10.12171/j.1000-1522.20200367

Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Ryu Y, Chen G, Dong W, Hu Z (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv 5(8):eaax1396. https://doi.org/10.1126/sciadv.aax1396

Zachmann LJ, Wiens JF, Franklin K, Crausbay SD, Landau VA, Munson SM (2021) Dominant Sonoran Desert plant species have divergent phenological responses to climate change. Madroño 68(4):473–486. https://doi.org/10.3120/0024-9637-68.4.473

Zettlemoyer MA, Schultheis EH, Lau JA (2019) Phenology in a warming world: differences between native and non-native plant species. Ecol Lett 22(8):1253–1263. https://doi.org/10.1111/ele.13290

Zheng J, Ge Q, Hao Z, Wang W-C (2006) Spring phenophases in recent decades over eastern China and its possible link to climate changes. Clim Change 77(3-4):449–462. https://doi.org/10.1007/s10584-005-9038-6

Zhao J, Ouyang Z, Zheng H, Zhou W, Wang X, Xu W, Ni Y (2010) Plant species composition in green spaces within the built-up areas of Beijing, China. Plant Ecol 209(2):189–204. https://doi.org/10.1007/s11258-009-9675-3

Zhong SY, Ge QS, Zheng JY, Dai JH, Wang HJ (2012) Changes of main phenophases of natural calendar and phenological seasons in Beijing for the last 30 years. Chin J Plant Ecol 36(12):1217–1225. https://doi.org/10.3724/sp.j.1258.2012.01217

Zohner CM (2019) Phenology and the city. Nat Ecol Evol 3(12):1618–1619. https://doi.org/10.1038/s41559-019-1043-7