Những tiến bộ trong siêu âm, chụp cắt lớp vi tính và cộng hưởng từ gan: tiến tới tương lai
Tóm tắt
Trong hai thập kỷ qua, dịch tễ học của bệnh gan mãn tính đã thay đổi với sự gia tăng tỷ lệ mắc bệnh gan nhiễm mỡ không do rượu song song với sự ra đời của các phương pháp điều trị khỏi bệnh viêm gan C. Những phát triển gần đây đã cung cấp các công cụ mới cho chẩn đoán và theo dõi các bệnh gan dựa trên siêu âm (US), chụp cắt lớp vi tính (CT) và cộng hưởng từ (MRI), áp dụng để đánh giá tình trạng nhiễm mỡ, xơ hóa và tổn thương khu trú. Bài tổng quan này nhằm thảo luận về những phương pháp mới nổi trong hình ảnh gan định tính và định lượng, tập trung vào những phương pháp dự kiến sẽ được áp dụng trong thực hành lâm sàng trong 5 đến 10 năm tới. Trong khi radiomics là một công cụ mới nổi cho nhiều ứng dụng này, các kỹ thuật chuyên biệt đã được nghiên cứu cho siêu âm (tham số suy giảm kiểm soát, hệ số phản xạ, các phương pháp đàn hồi như đàn hồi sóng cắt điểm [pSWE] và đàn hồi tạm thời [TE], các kỹ thuật Doppler mới và siêu âm ba chiều tăng cường tương phản [3D-CEUS]), CT (năng lượng kép, đếm photon phổ, tỷ lệ thể tích ngoài tế bào, tưới máu và khối u bề mặt), và MRI (tỷ lệ mỡ trên mật độ proton [PDFF], đàn hồi [MRE], chỉ số tăng cường tương phản, tăng cường tương đối, lập bản đồ T1 trong giai đoạn gan mật, tưới máu). Đồng thời, sự ra đời của các giao thức MRI rút gọn sẽ giúp đáp ứng ngày càng nhiều yêu cầu khám bệnh trong thời đại các hạn chế về tài nguyên chăm sóc sức khỏe.
Từ khóa
Tài liệu tham khảo
Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15:11–20 https://doi.org/10.1038/nrgastro.2017.109
Lombardi A, Mondelli MU, ESCMID Study Group for Viral Hepatitis (ESGVH) (2019) Hepatitis C: is eradication possible? Liver Int 39:416–426 https://doi.org/10.1111/liv.14011
Kleiner DE, Brunt EM, Van Natta M et al (2005) Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321 https://doi.org/10.1002/hep.20701
Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62:S47–S64 https://doi.org/10.1016/j.jhep.2014.12.012
Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, Grimaldi A, Capron F, Poynard T, LIDO Study Group (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–1906 https://doi.org/10.1053/j.gastro.2005.03.084
Dioguardi Burgio M, Bruno O, Agnello F, Torrisi C, Vernuccio F, Cabibbo G, Soresi M, Petta S, Calamia M, Papia G, Gambino A, Ricceri V, Midiri M, Lagalla R, Brancatelli G (2016) The cheating liver: imaging of focal steatosis and fatty sparing. Expert Rev Gastroenterol Hepatol 10:671–678 https://doi.org/10.1586/17474124.2016.1169919
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–357 https://doi.org/10.1002/hep.29367
Chung GE, Heo NJ, Kim D, Kwak MS, Yim JY, Kim JS, Ahmed A (2020) Association between advanced fibrosis in fatty liver disease and overall mortality based on body fat distribution. J Gastroenterol Hepatol 35:90–96 https://doi.org/10.1111/jgh.14778
Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J (1981) Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1:431–435 https://doi.org/10.1002/hep.1840010511
Liu F, Goh GB, Tiniakos D et al (2020) qFIBS: an automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis. Hepatology 71:1953–1966 https://doi.org/10.1002/hep.30986
Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, Guha IN, Cobbold JF, Deeks JJ, Paradis V, Bedossa P, Newsome PN (2019) Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156:1717–1730 https://doi.org/10.1053/j.gastro.2019.01.042
Shah A, Tang A, Santillan C, Sirlin C (2016) Cirrhotic liver: what’s that nodule? The LI-RADS approach. J Magn Reson Imaging 43:281–294 https://doi.org/10.1002/jmri.24937
Zhang L, Yu X, Huo L, Lu L, Pan X, Jia N, Fan X, Morana G, Grazioli L, Schneider G (2019) Detection of liver metastases on gadobenate dimeglumine-enhanced MRI: systematic review, meta-analysis, and similarities with gadoxetate-enhanced MRI. Eur Radiol 29:5205–5216 https://doi.org/10.1007/s00330-019-06110-1
Canellas R, Patel MJ, Agarwal S, Sahani DV (2019) Lesion detection performance of an abbreviated gadoxetic acid-enhanced MRI protocol for colorectal liver metastasis surveillance. Eur Radiol 29:5852–5860 https://doi.org/10.1007/s00330-019-06113-y
Dioguardi Burgio M, Imbault M, Ronot M, Faccinetto A, van Beers BE, Rautou PE, Castera L, Gennisson JL, Tanter M, Vilgrain V (2019) Ultrasonic adaptive sound speed estimation for the diagnosis and quantification of hepatic steatosis: a pilot study. Ultraschall Med 40:722–733 https://doi.org/10.1055/a-0660-9465
Dioguardi Burgio M, Ronot M, Reizine E, Rautou PE, Castera L, Paradis V, Garteiser P, van Beers B, Vilgrain V (2020) (2020) Quantification of hepatic steatosis with ultrasound: promising role of attenuation imaging coefficient in a biopsy-proven cohort. Eur Radiol 30:2293–2301 https://doi.org/10.1007/s00330-019-06480-6
Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, Kumar M, Lupsor-Platon M, Han KH, Cardoso AC, Ferraioli G, Chan WK, Wong VWS, Myers RP, Chayama K, Friedrich-Rust M, Beaugrand M, Shen F, Hiriart JB, Sarin SK, Badea R, Jung KS, Marcellin P, Filice C, Mahadeva S, Wong GLH, Crotty P, Masaki K, Bojunga J, Bedossa P, Keim V, Wiegand J (2017) Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol 66:1022–1030 https://doi.org/10.1016/j.jhep.2016.12.022
Berzigotti A, Ferraioli G, Bota S, Gilja OH, Dietrich CF (2018) Novel ultrasound-based methods to assess liver disease: the game has just begun. Dig Liver Dis 50:107–112 https://doi.org/10.1016/j.dld.2017.11.019
Ferraioli G, Soares Monteiro LB (2019) Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol 25:6053–6062 https://doi.org/10.3748/wjg.v25.i40.6053
Tang A, Destrempes F, Kazemirad S, Garcia-Duitama J, Nguyen BN, Cloutier G (2019) Quantitative ultrasound and machine learning for assessment of steatohepatitis in a rat model. Eur Radiol 29:2175–2184 https://doi.org/10.1007/s00330-018-5915-z
Dietrich CF, Bamber J, Berzigotti A, Bota S, Cantisani V, Castera L, Cosgrove D, Ferraioli G, Friedrich-Rust M, Gilja O, Goertz R, Karlas T, de Knegt R, de Ledinghen V, Piscaglia F, Procopet B, Saftoiu A, Sidhu P, Sporea I, Thiele M (2017) EFSUMB Guidelines and Recommendations on the clinical use of liver ultrasound elastography, update 2017 (long version). Ultraschall Med 38:e16–e47 https://doi.org/10.1055/s-0043-103952
Kennedy P, Wagner M, Castéra L, Hong CW, Johnson CL, Sirlin CB, Taouli B (2018) Quantitative elastography methods in liver disease: current evidence and future directions. Radiology 286:738–763 https://doi.org/10.1148/radiol.2018170601
Barr RG, Wilson SR, Rubens D, Garcia-Tsao G, Ferraioli G (2020) Update to the Society of Radiologists in Ultrasound liver elastography consensus statement. Radiology. 296:263–274 https://doi.org/10.1148/radiol.2020192437
Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, Wu C, Liu C, Huang L, Jiang T’, Meng F, Lu Y, Ai H, Xie XY, Yin LP, Liang P, Tian J, Zheng R (2019) Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 68:729–741 https://doi.org/10.1136/gutjnl-2018-316204
Park HJ, Lee SS, Park B, Yun J, Sung YS, Shim WH, Shin YM, Kim SY, Lee SJ, Lee MG (2019) Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology 290:380–387 https://doi.org/10.1148/radiol.2018181197
Cannella R, Borhani AA, Tublin M, Behari J, Furlan A (2019) Diagnostic value of MR-based texture analysis for the assessment of hepatic fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Abdom Radiol (NY) 44:1816–1824 https://doi.org/10.1007/s00261-019-01931-6
Bartolotta TV, Vernuccio F, Taibbi A, Lagalla R (2016) Contrast-enhanced ultrasound in focal liver lesions: where do we stand? Semin Ultrasound CT MR 37:573–586 https://doi.org/10.1053/j.sult.2016.10.003
Bartolotta TV, Taibbi A, Midiri M, Matranga D, Solbiati L, Lagalla R (2011) Indeterminate focal liver lesions incidentally discovered at gray-scale US: role of contrast-enhanced sonography. Investig Radiol 46:106–115 https://doi.org/10.1097/RLI.0b013e3181f44184
Huang JY, Li JW, Lu Q, Luo Y, Lin L, Shi YJ, Li T, Liu JB, Lyshchik A (2020) Diagnostic accuracy of CEUS LI-RADS for the characterization of liver nodules 20 mm or smaller in patients at risk for hepatocellular carcinoma. Radiology 294:329–339 https://doi.org/10.1148/radiol.2019191086
Bansal S, Gui J, Merrill C, Wong JK, Burak KW, Wilson SR (2019) Contrast-enhanced US in local ablative therapy and secondary surveillance for hepatocellular carcinoma. Radiographics 39:1302–1322 https://doi.org/10.1148/rg.2019180205
Westwood M, Joore M, Grutters J, Redekop K, Armstrong N, Lee K, Gloy V, Raatz H, Misso K, Severens J, Kleijnen J (2013) Contrast-enhanced ultrasound using SonoVue® (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis. Health Technol Assess 17:1–243 https://doi.org/10.3310/hta17160
Lassau N, Bonastre J, Kind M, Vilgrain V, Lacroix J, Cuinet M, Taieb S, Aziza R, Sarran A, Labbe-Devilliers C, Gallix B, Lucidarme O, Ptak Y, Rocher L, Caquot LM, Chagnon S, Marion D, Luciani A, Feutray S, Uzan-Augui J, Coiffier B, Benastou B, Koscielny S (2014) Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study. Investig Radiol 49:794–800 https://doi.org/10.1097/RLI.0000000000000085
Kim D, Lee JH, Moon H, Seo M, Han H, Yoo H, Seo H, Lee J, Hong S, Kim P, Lee HJ, Chung JW, Kim H (2021) Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Theranostics 11:79–92 https://doi.org/10.7150/thno.45348
Bae JS, Lee JM, Jeon SK, Jang S (2020) Comparison of MicroFlow Imaging with color and power Doppler imaging for detecting and characterizing blood flow signals in hepatocellular carcinoma. Ultrasonography 39:85–93 https://doi.org/10.14366/usg.19033
Dubinsky TJ, Revels J, Wang S, Toia G, Sonneborn R, Hippe DS, Erpelding T (2018) Comparison of superb microvascular imaging with color flow and power Doppler imaging of small hepatocellular carcinomas. J Ultrasound Med 37:2915–2924 https://doi.org/10.1002/jum.14654
Liu D, Liu F, Xie X, Su L, Liu M, Xie X, Kuang M, Huang G, Wang Y, Zhou H, Wang K, Lin M, Tian J (2020) Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Eur Radiol 30:2365–2376 https://doi.org/10.1007/s00330-019-06553-6
Ding Y, Marin D, Vernuccio F, Gonzalez F, Williamson HV, Becker HC, Patel BN, Solomon J, Ramirez-Giraldo JC, Samei E, Nelson RC, Meyer M (2021) Variability of quantitative measurements of metastatic liver lesions: a multi-radiation-dose-level and multi-reader comparison. Abdom Radiol (NY) 46:226–236 https://doi.org/10.1007/s00261-020-02601-8
Vernuccio F, Marin D (2020) CT material identification. In: Samei E, Pelc N (eds) Computed Tomography. Springer, Cham https://doi.org/10.1007/978-3-030-26957-9_16
Hyodo T, Yada N, Hori M, Maenishi O, Lamb P, Sasaki K, Onoda M, Kudo M, Mochizuki T, Murakami T (2017) Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology 283:108–118 https://doi.org/10.1148/radiol.2017160130
Naganawa S, Enooku K, Tateishi R, Akai H, Yasaka K, Shibahara J, Ushiku T, Abe O, Ohtomo K, Kiryu S (2018) Imaging prediction of nonalcoholic steatohepatitis using computed tomography texture analysis. Eur Radiol 28:3050–3058 https://doi.org/10.1007/s00330-017-5270-5
Pickhardt PJ, Blake GM, Graffy PM, Sandfort V, Elton DC, Perez AA, Summers RM (2021) Liver steatosis categorization on contrast-enhanced CT using a fully-automated deep learning volumetric segmentation tool: evaluation in 1,204 heathy adults using unenhanced CT as reference standard. AJR Am J Roentgenol 217:359–367 https://doi.org/10.2214/AJR.20.24415
Guo SL, Su LN, Zhai YN, Chirume WM, Lei JQ, Zhang H, Yang L, Shen XP, Wen XX, Guo YM (2017) The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis. Clin Radiol 72:242–246 https://doi.org/10.1016/j.crad.2016.10.003
Ronot M, Leporq B, Van Beers BE, Vilgrain V (2020) CT and MR perfusion techniques to assess diffuse liver disease. Abdom Radiol (NY) 45:3496–3506 https://doi.org/10.1007/s00261-019-02338-z
Kalarakis G, Perisinakis K, Akoumianakis E, Karageorgiou I, Hatzidakis A (2021) CT liver perfusion in patients with hepatocellular carcinoma: can we modify acquisition protocol to reduce patient exposure? Eur Radiol 31:1410–1419 https://doi.org/10.1007/s00330-020-07206-9
Smith AD, Branch CR, Zand K, Subramony C, Zhang H, Thaggard K, Hosch R, Bryan J, Vasanji A, Griswold M, Zhang X (2016) Liver surface nodularity quantification from routine CT images as a biomarker for detection and evaluation of cirrhosis. Radiology. 280:771–781 https://doi.org/10.1148/radiol.2016151542
Pickhardt PJ, Graffy PM, Said A, Jones D, Welsh B, Zea R, Lubner MG (2019) Multiparametric CT for noninvasive staging of hepatitis C virus-related liver fibrosis: correlation with the histopathologic fibrosis score. AJR Am J Roentgenol 212:547–553 https://doi.org/10.2214/AJR.18.20284
Vernuccio F, Cannella R, Comelli A, Salvaggio G, Lagalla R, Midiri M (2020) Radiomica e intelligenza artificiale: nuove frontiere in medicina [Radiomics and artificial intelligence: new frontiers in medicine.]. Recenti Prog Med 111:130–135 https://doi.org/10.1701/3315.32853
Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, Yun J, Choi JY, Lee Y, Kang BK, Kim JH, Kim SY, Yu ES (2018) Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology 289:688–697 https://doi.org/10.1148/radiol.2018180763
Meyer M, Ronald J, Vernuccio F, Nelson RC, Ramirez-Giraldo JC, Solomon J, Patel BN, Samei E, Marin D (2019) Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings. Radiology 293:583–591 https://doi.org/10.1148/radiol.2019190928
Lubner MG, Graffy PM, Said A, Watson R, Zea R, Malecki KM, Pickhardt PJ (2021) Utility of multiparametric CT for identification of high-risk NAFLD. AJR Am J Roentgenol 216:659–668 https://doi.org/10.2214/AJR.20.22842
Roberts LR, Sirlin CB, Zaiem F, Almasri J, Prokop LJ, Heimbach JK, Murad MH, Mohammed K (2018) Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67:401–421 https://doi.org/10.1002/hep.29487
Vernuccio F, Dioguardi Burgio M, Barbiera F, Cusmà S, Badalamenti G, Midiri M, Vilgrain V, Brancatelli G (2019) CT and MR imaging of chemotherapy-induced hepatopathy. Abdom Radiol (NY) 44:3312–3324 https://doi.org/10.1007/s00261-019-02193-y
Gore RM, Pickhardt PJ, Mortele KJ, Fishman EK, Horowitz JM, Fimmel CJ, Talamonti MS, Berland LL, Pandharipande PV (2017) Management of incidental liver lesions on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:1429–1437 https://doi.org/10.1016/j.jacr.2017.07.018
Patel BN, Rosenberg M, Vernuccio F, Ramirez-Giraldo JC, Nelson R, Farjat A, Marin D (2018) Characterization of small incidental indeterminate hypoattenuating hepatic lesions: added value of single-phase contrast-enhanced dual-energy CT material attenuation analysis. AJR Am J Roentgenol 211:571–579 https://doi.org/10.2214/AJR.17.19170
Kim SH, Kamaya A, Willmann JK (2014) CT perfusion of the liver: principles and applications in oncology. Radiology 272:322–344 https://doi.org/10.1148/radiol.14130091
Muenzel D, Daerr H, Proksa R, Fingerle AA, Kopp FK, Douek P, Herzen J, Pfeiffer F, Rummeny EJ, Noël PB (2017) Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur Radiol Exp 1:25 https://doi.org/10.1186/s41747-017-0030-5
Mokrane FZ, Lu L, Vavasseur A, Otal P, Peron JM, Luk L, Yang H, Ammari S, Saenger Y, Rousseau H, Zhao B, Schwartz LH, Dercle L (2020) Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol 30:558–570 https://doi.org/10.1007/s00330-019-06347-w
Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 85:1867–1874 https://doi.org/10.1016/j.ejrad.2016.08.014
Simpson AL, Doussot A, Creasy JM, Adams LB, Allen PJ, DeMatteo RP, Gönen M, Kemeny NE, Kingham TP, Shia J, Jarnagin WR, Do RKG, D’Angelica MI (2017) Computed tomography image texture: a noninvasive prognostic marker of hepatic recurrence after hepatectomy for metastatic colorectal cancer. Ann Surg Oncol 24:2482–2490 https://doi.org/10.1245/s10434-017-5896-1
Cannella R, Borhani AA, Minervini MI, Tsung A, Furlan A (2019) Evaluation of texture analysis for the differential diagnosis of focal nodular hyperplasia from hepatocellular adenoma on contrast-enhanced CT images. Abdom Radiol (NY) 44:1323–1330 https://doi.org/10.1007/s00261-018-1788-5
Ahn SJ, Kim JH, Lee SM, Park SJ, Han JK (2019) CT reconstruction algorithms affect histogram and texture analysis: evidence for liver parenchyma, focal solid liver lesions, and renal cysts. Eur Radiol 29:4008–4015 https://doi.org/10.1007/s00330-018-5829-9
Agnello F, Dioguardi Burgio M, Picone D, Vernuccio F, Cabibbo G, Giannitrapani L, Taibbi A, Agrusa A, Bartolotta TV, Galia M, Lagalla R, Midiri M, Brancatelli G (2016) Magnetic resonance imaging of the cirrhotic liver in the era of gadoxetic acid. World J Gastroenterol 22:103–111 https://doi.org/10.3748/wjg.v22.i1.103
Kambadakone AR, Fung A, Gupta RT, Hope TA, Fowler KJ, Lyshchik A, Ganesan K, Yaghmai V, Guimaraes AR, Sahani DV, Miller FH (2018) LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound. Abdom Radiol (NY) 43:56–74 https://doi.org/10.1007/s00261-017-1325-y
Neri E, Bali MA, Ba-Ssalamah A, Boraschi P, Brancatelli G, Alves FC, Grazioli L, Helmberger T, Lee JM, Manfredi R, Martì-Bonmatì L, Matos C, Merkle EM, op de Beeck B, Schima W, Skehan S, Vilgrain V, Zech C, Bartolozzi C (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921–931 https://doi.org/10.1007/s00330-015-3900-3
Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749 https://doi.org/10.1002/jmri.22775
Qayyum A (2009) MR spectroscopy of the liver: principles and clinical applications. Radiographics 29:1653–1664 https://doi.org/10.1148/rg.296095520
Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Gamst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schwimmer JB, Sirlin CB (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431 https://doi.org/10.1148/radiol.12120896
Gu J, Liu S, Du S et al (2019) Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol 29:3564–3573 https://doi.org/10.1007/s00330-019-06072-4
Pooler BD, Wiens CN, McMillan A, Artz NS, Schlein A, Covarrubias Y, Hooker J, Schwimmer JB, Funk LM, Campos GM, Greenberg JA, Jacobsen G, Horgan S, Wolfson T, Gamst AC, Sirlin CB, Reeder SB (2019) Monitoring fatty liver disease with MRI following bariatric surgery: a prospective, dual-center study. Radiology 290:682–690 https://doi.org/10.1148/radiol.2018181134
Satkunasingham J, Nik HH, Fischer S, Menezes R, Selzner N, Cattral M, Grant D, Jhaveri K (2018) Can negligible hepatic steatosis determined by magnetic resonance imaging-proton density fat fraction obviate the need for liver biopsy in potential liver donors? Liver Transpl 24:470–477 https://doi.org/10.1002/lt.24965
Gutmann DAP, Rospleszcz S, Rathmann W, Schlett CL, Peters A, Wachinger C, Gatidis S, Bamberg F (2020) MRI-derived radiomics features of hepatic fat predict metabolic states in individuals without cardiovascular disease. Acad Radiol https://doi.org/10.1016/j.acra.2020.06.030
Petitclerc L, Sebastiani G, Gilbert G, Cloutier G, Tang A (2017) Liver fibrosis: review of current imaging and MRI quantification techniques. J Magn Reson Imaging 45:1276–1295 https://doi.org/10.1002/jmri.25550
Guglielmo FF, Venkatesh SK, Mitchell DG (2019) Liver MR elastography technique and image interpretation: pearls and pitfalls. Radiographics 39:1983–2002 https://doi.org/10.1148/rg.2019190034
Singh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, Hassanein T, Asbach P, Godfrey EM, Yin M, Chen J, Keaveny AP, Bridges M, Bohte A, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13:440–451.e6 https://doi.org/10.1016/j.cgh.2014.09.046
Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, Man K, Wu EX (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 36:159–167 https://doi.org/10.1002/jmri.23607
Bastati N, Beer L, Mandorfer M, Poetter-Lang S, Tamandl D, Bican Y, Elmer MC, Einspieler H, Semmler G, Simbrunner B, Weber M, Hodge JC, Vernuccio F, Sirlin C, Reiberger T, Ba-Ssalamah A (2020) Does the functional liver imaging score derived from gadoxetic acid-enhanced MRI predict outcomes in chronic liver disease? Radiology 294:98–107 https://doi.org/10.1148/radiol.2019190734
Khouri Chalouhi C, Vernuccio F, Rini F, Duca P, Tuscano B, Brancatelli G, Vanzulli A (2019) Hepatobiliary phase in cirrhotic patients with different model for end-stage liver disease score: comparison of the performance of gadoxetic acid to gadobenate dimeglumine. Eur Radiol 29:3090–3099 https://doi.org/10.1007/s00330-018-5884-2
Li Z, Sun J, Hu X, Huang N, Han G, Chen L, Zhou Y, Bai W, Yang X (2016) Assessment of liver fibrosis by variable flip angle T1 mapping at 3.0T. J Magn Reson Imaging 43:698–703 https://doi.org/10.1002/jmri.25030
Choi SH, Kim SY, Park SH, Kim KW, Lee JY, Lee SS, Lee MG (2018) Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: systematic review and meta-analysis. J Magn Reson Imaging 47:1237–1250 https://doi.org/10.1002/jmri.25852
Canellas R, Rosenkrantz AB, Taouli B, Sala E, Saini S, Pedrosa I, Wang ZJ, Sahani DV (2019) Abbreviated MRI protocols for the abdomen. Radiographics 39:744–758 https://doi.org/10.1148/rg.2019180123
An JY, Peña MA, Cunha GM, Booker MT, Taouli B, Yokoo T, Sirlin CB, Fowler KJ (2020) Abbreviated MRI for hepatocellular carcinoma screening and surveillance. Radiographics 40:1916–1931 https://doi.org/10.1148/rg.2020200104
Lee JY, Huo EJ, Weinstein S, Santos C, Monto A, Corvera CU, Yee J, Hope TA (2018) Evaluation of an abbreviated screening MRI protocol for patients at risk for hepatocellular carcinoma. Abdom Radiol (NY) 43:1627–1633 https://doi.org/10.1007/s00261-017-1339-5
Cannella R, Fraum TJ, Ludwig DR, Borhani AA, Tsung A, Furlan A, Fowler KJ (2021) Targetoid appearance on T2-weighted imaging and signs of tumor vascular involvement: diagnostic value for differentiating HCC from other primary liver carcinomas. Eur Radiol 31:6868–6878 https://doi.org/10.1007/s00330-021-07743-x
Vernuccio F, Porrello G, Cannella R, Vernuccio L, Midiri M, Giannitrapani L, Soresi M, Brancatelli G (2021) Benign and malignant mimickers of infiltrative hepatocellular carcinoma: tips and tricks for differential diagnosis on CT and MRI. Clin Imaging 70:33–45. https://doi.org/https://doi.org/10.1016/j.clinimag.2020.10.011.
Elsayes KM, Leyendecker JR, Menias CO, Oliveira EP, Narra VR, Chapman WC, Hassanien MH, Elsharkawy MS, Brown JJ (2007) MRI characterization of 124 CT-indeterminate focal hepatic lesions: evaluation of clinical utility. HPB (Oxford) 9:208–215 https://doi.org/10.1080/13651820701216950
Jeon SK, Lee JM, Joo I, Lee DH, Ahn SJ, Woo H, Lee MS, Jang JY, Han JK (2018) Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT. Eur Radiol 28:3484–3493 https://doi.org/10.1007/s00330-017-5258-1
Hectors SJ, Lewis S, Besa C, King MJ, Said D, Putra J, Ward S, Higashi T, Thung S, Yao S, Laface I, Schwartz M, Gnjatic S, Merad M, Hoshida Y, Taouli B (2020) MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol 30:3759–3769 https://doi.org/10.1007/s00330-020-06675-2
Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, Wei K, Chen L, Li B, Wang W, Chen S, He X, Wang H, Peng S, Chen ZB, Tang M, Chen Z, Hou Y, Peng Z, Kuang M (2019) Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol 29:4648–4659 https://doi.org/10.1007/s00330-018-5935-8
Li Z, Mao Y, Huang W, Li H, Zhu J, Li W, Li B (2017) Texture-based classification of different single liver lesion based on SPAIR T2W MRI images. BMC Med Imaging 17:42 https://doi.org/10.1186/s12880-017-0212-x
Halligan S, Menu Y, Mallett S (2021) Why did European radiology reject my radiomic biomarker paper? How to correctly evaluate imaging biomarkers in a clinical setting. Eur Radiol https://doi.org/10.1007/s00330-021-07971-1
Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2:35 https://doi.org/10.1186/s41747-018-0061-6
Rizzetto F, Calderoni F, De Mattia C et al (2020) Impact of inter-reader contouring variability on textural radiomics of colorectal liver metastases. Eur Radiol Exp 4:62 https://doi.org/10.1186/s41747-020-00189-8
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging 11:91 https://doi.org/10.1186/s13244-020-00887-2