Advances in brain barriers and brain fluids research in 2021: great progress in a time of adversity
Tóm tắt
This editorial highlights advances in brain barrier and brain fluid research in 2021. It covers research on components of the blood–brain barrier, neurovascular unit and brain fluid systems; how brain barriers and brain fluid systems are impacted by neurological disorders and their role in disease progression; and advances in strategies for treating such disorders.
Tài liệu tham khảo
Castro Dias M, Odriozola Quesada A, Soldati S, Bosch F, Gruber I, Hildbrand T, Sonmez D, Khire T, Witz G, McGrath JL, et al. Brain endothelial tricellular junctions as novel sites for T cell diapedesis across the blood–brain barrier. J Cell Sci. 2021;134(8):15.
Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, Puchkov D, Devraj K, Kaya M, Qin Z, et al. Tight junctions in the blood–brain barrier promote edema formation and infarct size in stroke—ambivalent effects of sealing proteins. J Cereb Blood Flow Metab. 2021;41(1):132–45.
Anquetil T, Solinhac R, Jaffre A, Chicanne G, Viaud J, Darcourt J, Orset C, Geuss E, Kleinschnitz C, Vanhaesebroeck B, et al. PI3KC2beta inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep. 2021;22(6): e51299.
Gong S, Cao G, Li F, Chen Z, Pan X, Ma H, Zhang Y, Yu B, Kou J. Endothelial conditional knockdown of NMMHC IIA (nonmuscle myosin heavy chain IIA) attenuates blood–brain barrier damage during ischemia–reperfusion injury. Stroke. 2021;52(3):1053–64.
Wu L, Islam MR, Lee J, Takase H, Guo S, Andrews AM, Buzhdygan TP, Mathew J, Li W, Arai K, et al. ErbB3 is a critical regulator of cytoskeletal dynamics in brain microvascular endothelial cells: implications for vascular remodeling and blood brain barrier modulation. J Cereb Blood Flow Metab. 2021;41(9):2242–55.
Bayir E, Sendemir A. Role of intermediate filaments in blood–brain barrier in health and disease. Cells. 2021;10(6):05.
Gindorf M, Storck SE, Ohler A, Scharfenberg F, Becker-Pauly C, Pietrzik CU. Meprin beta: a novel regulator of blood–brain barrier integrity. J Cereb Blood Flow Metab. 2021;41(1):31–44.
de Gooijer MC, Kemper EM, Buil LCM, Citirikkaya CH, Buckle T, Beijnen JH, van Tellingen O. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood–brain barrier integrity is lost. Cell Rep Med. 2021;2(1): 100184.
Ding Y, Zhong Y, Baldeshwiler A, Abner EL, Bauer B, Hartz AMS. Protecting P-glycoprotein at the blood–brain barrier from degradation in an Alzheimer’s disease mouse model. Fluids Barriers CNS. 2021;18(1):10.
Zhang SL, Lahens NF, Yue Z, Arnold DM, Pakstis PP, Schwarz JE, Sehgal A. A circadian clock regulates efflux by the blood–brain barrier in mice and human cells. Nat Commun. 2021;12(1):617.
Tang M, Park SH, Petri S, Yu H, Rueda CB, Abel ED, Kim CY, Hillman EM, Li F, Lee Y, et al. An early endothelial cell-specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice. JCI Insight. 2021;6(3):08.
Kucharz K, Kristensen K, Johnsen KB, Lund MA, Lonstrup M, Moos T, Andresen TL, Lauritzen MJ. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun. 2021;12(1):4121.
Storck SE, Kurtyka M, Pietrzik CU. Brain endothelial LRP1 maintains blood–brain barrier integrity. Fluids Barriers CNS. 2021;18(1):27.
Li Y, Faiz A, Moshage H, Schubert R, Schilling L, Kamps JA. Comparative transcriptome analysis of inner blood-retinal barrier and blood–brain barrier in rats. Sci Rep. 2021;11(1):12151.
Stokum JA, Shim B, Huang W, Kane M, Smith JA, Gerzanich V, Simard JM. A large portion of the astrocyte proteome is dedicated to perivascular endfeet, including critical components of the electron transport chain. J Cereb Blood Flow Metab. 2021;41(10):2546–60.
Wang H, Xu Z, Xia Z, Rallo M, Duffy A, Matise MP. Inactivation of Hedgehog signal transduction in adult astrocytes results in region-specific blood–brain barrier defects. Proc Natl Acad Sci USA. 2021;118(34):24.
Jain M, Das S, Lu PPY, Virmani G, Soman S, Thumu SCR, Gutmann DH, Ramanan N. SRF is required for maintenance of astrocytes in non-reactive state in the mammalian brain. Eneuro. 2021. https://doi.org/10.1523/ENEURO.0447-19.2020.
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS. 2021;18(1):14.
Torok O, Schreiner B, Schaffenrath J, Tsai HC, Maheshwari U, Stifter SA, Welsh C, Amorim A, Sridhar S, Utz SG, et al. Pericytes regulate vascular immune homeostasis in the CNS. Proc Natl Acad Sci USA. 2021;118(10):09.
Sun Z, Gao C, Gao D, Sun R, Li W, Wang F, Wang Y, Cao H, Zhou G, Zhang J, et al. Reduction in pericyte coverage leads to blood–brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS. 2021;18(1):21.
Zhang W, Davis CM, Zeppenfeld DM, Golgotiu K, Wang MX, Haveliwala M, Hong D, Li Y, Wang RK, Iliff JJ, et al. Role of endothelium-pericyte signaling in capillary blood flow response to neuronal activity. J Cereb Blood Flow Metab. 2021;41(8):1873–85.
Pfeiffer T, Li Y, Attwell D. Diverse mechanisms regulating brain energy supply at the capillary level. Curr Opin Neurobiol. 2021;69:41–50.
Shaw K, Bell L, Boyd K, Grijseels DM, Clarke D, Bonnar O, Crombag HS, Hall CN. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat Commun. 2021;12(1):3190.
Mae MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave-Gassiot A, et al. Single-cell analysis of blood–brain barrier response to pericyte loss. Circ Res. 2021;128(4):e46–62.
Kurmann L, Okoniewski M, Ogunshola OO, Leeners B, Imthurn B, Dubey RK. Transcryptomic analysis of human brain-microvascular endothelial response to-pericytes: cell orientation defines barrier function. Cells. 2021;10(4):20.
Kurmann L, Okoniewski M, Dubey RK. Transcryptomic analysis of human brain-microvascular endothelial cell driven changes in-vascular pericytes. Cells. 2021;10(7):14.
Procter TV, Williams A, Montagne A. Interplay between brain pericytes and endothelial cells in dementia. Am J Pathol. 2021;191(11):1917–31.
Ornelas S, Berthiaume AA, Bonney SK, Coelho-Santos V, Underly RG, Kremer A, Guerin CJ, Lippens S, Shih AY. Three-dimensional ultrastructure of the brain pericyte-endothelial interface. J Cereb Blood Flow Metab. 2021;41(9):2185–200.
Mughal A, Sackheim AM, Sancho M, Longden TA, Russell S, Lockette W, Nelson MT, Freeman K. Impaired capillary-to-arteriolar electrical signaling after traumatic brain injury. J Cereb Blood Flow Metab. 2021;41(6):1313–27.
Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, Shah NJ, O’Brien JT, Aigbirhio FI, Rosenberg G, et al. Microglial activation and blood–brain barrier permeability in cerebral small vessel disease. Brain. 2021;144(5):1361–71.
Bonney SK, Sullivan LT, Cherry TJ, Daneman R, Shih AY. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J Cereb Blood Flow Metab. 2021. https://doi.org/10.1177/0271678X211068528.
Manberg A, Skene N, Sanders F, Trusohamn M, Remnestal J, Szczepinska A, Aksoylu IS, Lonnerberg P, Ebarasi L, Wouters S, et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat Med. 2021;27(4):640–6.
Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, Cui J, Shipley FB, Jang A, Dionne D, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056-3074.e3021.
Kaiser K, Jang A, Kompanikova P, Lun MP, Prochazka J, Machon O, Dani N, Prochazkova M, Laurent B, Gyllborg D, et al. MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development. 2021;148(10):15.
Vong KI, Ma TC, Li B, Leung TCN, Nong W, Ngai SM, Hui JHL, Jiang L, Kwan KM. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci USA. 2021;118(6):09.
MacAulay N. Molecular mechanisms of brain water transport. Nat Rev Neurosci. 2021;22(6):326–44.
Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F, et al. Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun. 2021;12(1):447.
Ayub M, Jin HK, Bae JS. The blood cerebrospinal fluid barrier orchestrates immunosurveillance, immunoprotection, and immunopathology in the central nervous system. BMB Rep. 2021;54(4):196–202.
Chen T, Tan X, Xia F, Hua Y, Keep RF, Xi G. Hydrocephalus induced by intraventricular peroxiredoxin-2: the role of macrophages in the choroid plexus. Biomolecules. 2021;11(5):29.
Fleischer V, Gonzalez-Escamilla G, Ciolac D, Albrecht P, Kury P, Gruchot J, Dietrich M, Hecker C, Muntefering T, Bock S, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci USA. 2021;118(36):07.
Ricigliano VAG, Morena E, Colombi A, Tonietto M, Hamzaoui M, Poirion E, Bottlaender M, Gervais P, Louapre C, Bodini B, et al. Choroid plexus enlargement in inflammatory multiple sclerosis: 3.0-T MRI and translocator protein PET evaluation. Radiology. 2021;301(1):166–77.
Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS. 2021;18(1):20.
Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS. 2021;18(1):31.
Yang HW, Lee S, Yang D, Dai H, Zhang Y, Han L, Zhao S, Zhang S, Ma Y, Johnson MF, et al. Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. EMBO Mol Med. 2021;13(3): e13249.
Shukla S, Haenold R, Urbanek P, Frappart L, Monajembashi S, Grigaravicius P, Nagel S, Min WK, Tapias A, Kassel O, et al. TRIP6 functions in brain ciliogenesis. Nat Commun. 2021;12(1):5887.
Sepulveda V, Maurelia F, Gonzalez M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS. 2021;18(1):45.
Yang S, Emelyanov A, You MS, Sin M, Korzh V. Camel regulates development of the brain ventricular system. Cell Tissue Res. 2021;383(2):835–52.
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57.
Spalloni A, Caioli S, Bonomi E, Zona C, Buratti E, Alberici A, Borroni B, Longone P. Cerebrospinal fluid from frontotemporal dementia patients is toxic to neurons. Biochim Biophys Acta Mol Basis Dis. 2021;1867(6): 166122.
Wan S, Wei J, Hua Y, Koduri S, Keep RF, Xi G, Pandey AS. Cerebrospinal fluid from aneurysmal subarachnoid hemorrhage patients leads to hydrocephalus in nude mice. Neurocrit Care. 2021;34(2):423–31.
Alvarez I, Diez-Fairen M, Aguilar M, Gonzalez JM, Ysamat M, Tartari JP, Carcel M, Alonso A, Brix B, Arendt P, et al. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol. 2021;28(4):1142–52.
Camporesi E, Lashley T, Gobom J, Lantero-Rodriguez J, Hansson O, Zetterberg H, Blennow K, Becker B. Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers. Acta Neuropathol Commun. 2021;9(1):19.
Karikari TK, Emersic A, Vrillon A, Lantero-Rodriguez J, Ashton NJ, Kramberger MG, Dumurgier J, Hourregue C, Cucnik S, Brinkmalm G, et al. Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement. 2021;17(5):755–67.
Trelle AN, Carr VA, Wilson EN, Swarovski MS, Hunt MP, Toueg TN, Tran TT, Channappa D, Corso NK, Thieu MK, et al. Association of CSF biomarkers with hippocampal-dependent memory in preclinical Alzheimer disease. Neurology. 2021;96(10):e1470–81.
Cousins KAQ, Phillips JS, Irwin DJ, Lee EB, Wolk DA, Shaw LM, Zetterberg H, Blennow K, Burke SE, Kinney NG, et al. ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimers Dement. 2021;17(5):822–30.
Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, Alzheimer’s Disease Neuroimaging I, Dage JL, Stomrud E, Janelidze S, Mattsson-Carlgren N, et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat Med. 2021;27(6):1034–42.
Oechtering J, Schaedelin S, Benkert P, Muller S, Achtnichts L, Vehoff J, Disanto G, Findling O, Fischer-Barnicol B, Orleth A, et al. Intrathecal immunoglobulin M synthesis is an independent biomarker for higher disease activity and severity in multiple sclerosis. Ann Neurol. 2021;90(3):477–89.
Gaunitz S, Tjernberg LO, Schedin-Weiss S. What can N-glycomics and N-glycoproteomics of cerebrospinal fluid tell us about Alzheimer disease? Biomolecules. 2021;11(6):09.
Byeon SK, Madugundu AK, Jain AP, Bhat FA, Jung JH, Renuse S, Darrow J, Bakker A, Albert M, Moghekar A, et al. Cerebrospinal fluid lipidomics for biomarkers of Alzheimer’s disease. Mol Omics. 2021;17(3):454–63.
Yamagishi Y, Sasaki N, Nakano Y, Matushita Y, Omura T, Shimizu S, Saito K, Kobayashi K, Narita Y, Kondo A, et al. Liquid biopsy of cerebrospinal fluid for MYD88 L265P mutation is useful for diagnosis of central nervous system lymphoma. Cancer Sci. 2021;112(11):4702–10.
Fujioka Y, Hata N, Akagi Y, Kuga D, Hatae R, Sangatsuda Y, Michiwaki Y, Amemiya T, Takigawa K, Funakoshi Y, et al. Molecular diagnosis of diffuse glioma using a chip-based digital PCR system to analyze IDH, TERT, and H3 mutations in the cerebrospinal fluid. J Neurooncol. 2021;152(1):47–54.
Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, Kang H, Carlsson CM, Johnson SC, Asthana S, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4(1):63.
Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, Fernandez MV, Wang F, Bradley JL, Eiffert B, Bahena JA, et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci. 2021;24(9):1302–12.
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147): 147ra111.
Hablitz LM, Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology. J Neurosci. 2021;41(37):7698–711.
Caron NS, Banos R, Yanick C, Aly AE, Byrne LM, Smith ED, Xie Y, Smith SEP, Potluri N, Findlay Black H, et al. Mutant huntingtin is cleared from the brain via active mechanisms in huntington disease. J Neurosci. 2021;41(4):780–96.
Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS. 2021;18(1):55.
Christensen J, Yamakawa GR, Shultz SR, Mychasiuk R. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol. 2021;198: 101917.
Lewis LD. The interconnected causes and consequences of sleep in the brain. Science. 2021;374(6567):564–8.
Tuura RO, Volk C, Callaghan F, Jaramillo V, Huber R. Sleep-related and diurnal effects on brain diffusivity and cerebrospinal fluid flow. Neuroimage. 2021;241: 118420.
Eide PK, Vinje V, Pripp AH, Mardal KA, Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain. 2021;144(3):863–74.
Targa A, Dakterzada F, Benitez I, Lopez R, Pujol M, Dalmases M, Arias A, Sanchez-de-la-Torre M, Zetterberg H, Blennow K, et al. Decrease in sleep depth is associated with higher cerebrospinal fluid neurofilament light levels in patients with Alzheimer’s disease. Sleep. 2021;44(2):12.
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of enlarged perivascular spaces and measures of small vessel and Alzheimer disease. Neurology. 2021;96(2):e193–202.
Paradise M, Crawford JD, Lam BCP, Wen W, Kochan NA, Makkar S, Dawes L, Trollor J, Draper B, Brodaty H, et al. Association of dilated perivascular spaces with cognitive decline and incident dementia. Neurology. 2021;96(11):e1501–11.
Ciampa I, Operto G, Falcon C, Minguillon C, Castro de Moura M, Pineyro D, Esteller M, Molinuevo JL, Guigo R, Navarro A, et al. Genetic predisposition to Alzheimer’s disease is associated with enlargement of perivascular spaces in centrum semiovale region. Genes. 2021;12(6):27.
Wu CH, Lirng JF, Ling YH, Wang YF, Wu HM, Fuh JL, Lin PC, Wang SJ, Chen SP. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood–brain barrier leakage. Ann Neurol. 2021;89(1):111–24.
Schafflick D, Wolbert J, Heming M, Thomas C, Hartlehnert M, Borsch AL, Ricci A, Martin-Salamanca S, Li X, Lu IN, et al. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat Neurosci. 2021;24(9):1225–34.
Hartlehnert M, Borsch AL, Li X, Burmeister M, Gerwien H, Schafflick D, Heming M, Lu IN, Narayanan V, Strecker JK, et al. Bcl6 controls meningeal Th17-B cell interaction in murine neuroinflammation. Proc Natl Acad Sci USA. 2021;118(36):07.
Brioschi S, Wang WL, Peng V, Wang M, Shchukina I, Greenberg ZJ, Bando JK, Jaeger N, Czepielewski RS, Swain A, et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science. 2021;373(6553): eabf9277.
Croese T, Castellani G, Schwartz M. Immune cell compartmentalization for brain surveillance and protection. Nat Immunol. 2021;22(9):1083–92.
Castranova D, Samasa B, Venero Galanternik M, Jung HM, Pham VN, Weinstein BM. Live imaging of intracranial lymphatics in the zebrafish. Circ Res. 2021;128(1):42–58.
Jeong YM, Lee JG, Cho HJ, Lee WS, Jeong J, Lee JS. Differential clearance of Aβ species from the brain by brain lymphatic endothelial cells in zebrafish. Int J Mol Sci. 2021;22(21):02.
Mezey E, Szalayova I, Hogden CT, Brady A, Dosa A, Sotonyi P, Palkovits M. An immunohistochemical study of lymphatic elements in the human brain. Proc Natl Acad Sci USA. 2021;118(3):19.
Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, Wojtkiewicz GR, Masson GS, Vinegoni C, Kim J, et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci. 2018;21(9):1209–17.
Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, Greenberg ZJ, Baker W, Papadopoulos Z, Drieu A, Blackburn S, et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science. 2021;373(6553): eabf7844.
He XF, Li LL, Xian WB, Li MY, Zhang LY, Xu JH, Pei Z, Zheng HQ, Hu XQ. Chronic colitis exacerbates NLRP3-dependent neuroinflammation and cognitive impairment in middle-aged brain. J Neuroinflamm. 2021;18(1):153.
Nelson JW, Phillips SC, Ganesh BP, Petrosino JF, Durgan DJ, Bryan RM. The gut microbiome contributes to blood–brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB J. 2021;35(2): e21201.
Carloni S, Bertocchi A, Mancinelli S, Bellini M, Erreni M, Borreca A, Braga D, Giugliano S, Mozzarelli AM, Manganaro D, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science. 2021;374(6566):439–48.
Hiltensperger M, Beltran E, Kant R, Tyystjarvi S, Lepennetier G, Dominguez Moreno H, Bauer IJ, Grassmann S, Jarosch S, Schober K, et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat Immunol. 2021;22(7):880–92.
Lippmann ES, Azarin SM, Palecek SP, Shusta EV. Commentary on human pluripotent stem cell-based blood–brain barrier models. Fluids Barriers CNS. 2020;17(1):64.
Lu TM, Houghton S, Magdeldin T, Duran JGB, Minotti AP, Snead A, Sproul A, Nguyen DT, Xiang J, Fine HA, et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci USA. 2021;118(8):23.
Linville RM, Searson PC. Next-generation in vitro blood–brain barrier models: benchmarking and improving model accuracy. Fluids Barriers CNS. 2021;18(1):56.
Gastfriend BD, Stebbins MJ, Du F, Shusta EV, Palecek SP. Differentiation of brain pericyte-like cells from human pluripotent stem cell-derived neural crest. Curr Protoc. 2021;1(1): e21.
Raut S, Patel R, Al-Ahmad AJ. Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS. 2021;18(1):3.
Lyu Z, Park J, Kim KM, Jin HJ, Wu H, Rajadas J, Kim DH, Steinberg GK, Lee W. A neurovascular-unit-on-a-chip for the evaluation of the restorative potential of stem cell therapies for ischaemic stroke. Nat Biomed Eng. 2021;5(8):847–63.
Wevers NR, Nair AL, Fowke TM, Pontier M, Kasi DG, Spijkers XM, Hallard C, Rabussier G, van Vught R, Vulto P, et al. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS. 2021;18(1):59.
Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Hinojosa CD, Tien-Street W, Manolakos ES, Vekrellis K, Hamilton GA, Ewart L, et al. Modeling alpha-synuclein pathology in a human brain-chip to assess blood–brain barrier disruption. Nat Commun. 2021;12(1):5907.
Ahn Y, An JH, Yang HJ, Lee DG, Kim J, Koh H, Park YH, Song BS, Sim BW, Lee HJ, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system. Cells. 2021;10(8):09.
Tong L, Hill RA, Damisah EC, Murray KN, Yuan P, Bordey A, Grutzendler J. Imaging and optogenetic modulation of vascular mural cells in the live brain. Nat Protoc. 2021;16(1):472–96.
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the blood–brain barrier. Int J Mol Sci. 2021;22(5):06.
McQuaid C, Brady M, Deane R. SARS-CoV-2: is there neuroinvasion? Fluids Barriers CNS. 2021;18(1):32.
Probstel AK, Schirmer L. SARS-CoV-2-specific neuropathology: fact or fiction? Trends Neurosci. 2021;44(12):933–5.
Bocci M, Oudenaarden C, Saenz-Sarda X, Simren J, Eden A, Sjolund J, Moller C, Gisslen M, Zetterberg H, Englund E, et al. Infection of brain pericytes underlying neuropathology of COVID-19 patients. Int J Mol Sci. 2021;22(21):27.
Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, Saghatelyan A, Flamand L, ElAli A. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis. 2021;161: 105561.
Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, Holden SJ, Raber J, Banks WA, Erickson MA. The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nat Neurosci. 2021;24(3):368–78.
Nuovo GJ, Magro C, Shaffer T, Awad H, Suster D, Mikhail S, He B, Michaille JJ, Liechty B, Tili E. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol. 2021;51: 151682.
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, Laue M, Schneider J, Brunink S, Greuel S, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–75.
Kirschenbaum D, Imbach LL, Rushing EJ, Frauenknecht KBM, Gascho D, Ineichen BV, Keller E, Kohler S, Lichtblau M, Reimann RR, et al. Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19. Neuropathol Appl Neurobiol. 2021;47(3):454–9.
Wenzel J, Lampe J, Muller-Fielitz H, Schuster R, Zille M, Muller K, Krohn M, Korbelin J, Zhang L, Ozorhan U, et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021;24(11):1522–33.
Kakarla V, Kaneko N, Nour M, Khatibi K, Elahi F, Liebeskind DS, Hinman JD. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab. 2021;41(6):1179–92.
Whitmore HAB, Kim LA. Understanding the role of blood vessels in the neurologic manifestations of coronavirus disease 2019 (COVID-19). Am J Pathol. 2021;191(11):1946–54.
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, Fehlmann T, Stein JA, Schaum N, Lee DP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71.
Nitzsche A, Poittevin M, Benarab A, Bonnin P, Faraco G, Uchida H, Favre J, Garcia-Bonilla L, Garcia MCL, Leger PL, et al. Endothelial S1P1 signaling counteracts infarct expansion in ischemic stroke. Circ Res. 2021;128(3):363–82.
Andersson EA, Mallard C, Ek CJ. Circulating tight-junction proteins are potential biomarkers for blood–brain barrier function in a model of neonatal hypoxic/ischemic brain injury. Fluids Barriers CNS. 2021;18(1):7.
Eidson LN, Gao Q, Qu H, Kikuchi DS, Campos ACP, Faidley EA, Sun YY, Kuan CY, Pagano RL, Lassegue B, et al. Poldip2 controls leukocyte infiltration into the ischemic brain by regulating focal adhesion kinase-mediated VCAM-1 induction. Sci Rep. 2021;11(1):5533.
Choi YH, Laaker C, Hsu M, Cismaru P, Sandor M, Fabry Z. Molecular mechanisms of neuroimmune crosstalk in the pathogenesis of stroke. Int J Mol Sci. 2021;22(17):31.
Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021;594(7862):271–6.
Lopez-Ramirez MA, Lai CC, Soliman SI, Hale P, Pham A, Estrada EJ, McCurdy S, Girard R, Verma R, Moore T, et al. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021. https://doi.org/10.1172/JCI139570.
Park ES, Kim S, Huang S, Yoo JY, Korbelin J, Lee TJ, Kaur B, Dash PK, Chen PR, Kim E. Selective endothelial hyperactivation of oncogenic KRAS induces brain arteriovenous malformations in mice. Ann Neurol. 2021;89(5):926–41.
Norager NH, Olsen MH, Pedersen SH, Riedel CS, Czosnyka M, Juhler M. Reference values for intracranial pressure and lumbar cerebrospinal fluid pressure: a systematic review. Fluids Barriers CNS. 2021;18(1):19.
Jacquemin V, Antoine M, Duerinckx S, Massart A, Desir J, Perazzolo C, Cassart M, Thomas D, Segers V, Lecomte S, et al. TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Hum Mol Genet. 2021;29(23):3757–64.
Ito N, Riyadh MA, Ahmad SAI, Hattori S, Kanemura Y, Kiyonari H, Abe T, Furuta Y, Shinmyo Y, Kaneko N, et al. Dysfunction of the proteoglycan Tsukushi causes hydrocephalus through altered neurogenesis in the subventricular zone in mice. Sci Transl Med. 2021;13(587):31.
Requena-Jimenez A, Nabiuni M, Miyan JA. Profound changes in cerebrospinal fluid proteome and metabolic profile are associated with congenital hydrocephalus. J Cereb Blood Flow Metab. 2021;41(12):3400–14.
Yang D, Yang H, Luiselli G, Ogagan C, Dai H, Chiu L, Carroll RS, Johnson MD. Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus. Proc Natl Acad Sci USA. 2021;118(33):17.
Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, Delezoide AL, Razavi F, Drouot N, Bazin A, Beaufrere AM, Bessieres B, Blesson S, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013;126(3):427–42.
Hale AT, Riva-Cambrin J, Wellons JC, Jackson EM, Kestle JRW, Naftel RP, Hankinson TC, Shannon CN, Hydrocephalus Clinical Research N. Machine learning predicts risk of cerebrospinal fluid shunt failure in children: a study from the hydrocephalus clinical research network. Childs Nerv Syst. 2021;37(5):1485–94.
Propson NE, Roy ER, Litvinchuk A, Kohl J, Zheng H. Endothelial C3a receptor mediates vascular inflammation and blood–brain barrier permeability during aging. J Clin Investig. 2021;131(1):04.
Nyul-Toth A, Tarantini S, DelFavero J, Yan F, Balasubramanian P, Yabluchanskiy A, Ahire C, Kiss T, Csipo T, Lipecz A, et al. Demonstration of age-related blood–brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol. 2021;320(4):H1370–92.
Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, Wall M, Jiang H, Kodira CD, de Lima KA, Herz J, et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature. 2021;593(7858):255–60.
Ries M, Watts H, Mota BC, Lopez MY, Donat CK, Baxan N, Pickering JA, Chau TW, Semmler A, Gurung B, et al. Annexin A1 restores cerebrovascular integrity concomitant with reduced amyloid-beta and tau pathology. Brain. 2021;144(5):1526–41.
Alvarez-Vergara MI, Rosales-Nieves AE, March-Diaz R, Rodriguez-Perinan G, Lara-Urena N, Ortega-de San Luis C, Sanchez-Garcia MA, Martin-Bornez M, Gomez-Galvez P, Vicente-Munuera P, et al. Non-productive angiogenesis disassembles As plaque-associated blood vessels. Nat Commun. 2021;12(1):3098.
Gate D, Tapp E, Leventhal O, Shahid M, Nonninger TJ, Yang AC, Strempfl K, Unger MS, Fehlmann T, Oh H, et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science. 2021;374(6569):868–74.
Steeg PS. The blood-tumour barrier in cancer biology and therapy. Nat Rev Clin Oncol. 2021;18(11):696–714.
Carlson JC, Cantu Gutierrez M, Lozzi B, Huang-Hobbs E, Turner WD, Tepe B, Zhang Y, Herman AM, Rao G, Creighton CJ, et al. Identification of diverse tumor endothelial cell populations in malignant glioma. Neuro Oncol. 2021;23(6):932–44.
Lara-Velazquez M, Zarco N, Carrano A, Phillipps J, Norton ES, Schiapparelli P, Al-Kharboosh R, Rincon-Torroella J, Jeanneret S, Corona T, et al. Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro Oncol. 2021;23(4):599–610.
Zarekiani P, Breur M, Wolf NI, de Vries HE, van der Knaap MS, Bugiani M. Pathology of the neurovascular unit in leukodystrophies. Acta Neuropathol Commun. 2021;9(1):103.
Crockett AM, Ryan SK, Vasquez AH, Canning C, Kanyuch N, Kebir H, Ceja G, Gesualdi J, Zackai E, McDonald-McGinn D, et al. Disruption of the blood–brain barrier in 22q11.2 deletion syndrome. Brain. 2021;144(5):1351–60.
Aydogan Avsar P, Isik U, Aktepe E, Kilic F, Doguc DK, Buyukbayram HI. Serum zonulin and claudin-5 levels in children with attention-deficit/hyperactivity disorder. Int J Psychiatry Clin Pract. 2021;25(1):49–55.
Rodriguez-Pascau L, Vilalta A, Cerrada M, Traver E, Forss-Petter S, Weinhofer I, Bauer J, Kemp S, Pina G, Pascual S, et al. The brain penetrant PPARgamma agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy. Sci Transl Med. 2021;13(596):02.
Dam T, Boxer AL, Golbe LI, Hoglinger GU, Morris HR, Litvan I, Lang AE, Corvol JC, Aiba I, Grundman M, et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med. 2021;27(8):1451–7.
Salloway S, Farlow M, McDade E, Clifford DB, Wang G, Llibre-Guerra JJ, Hitchcock JM, Mills SL, Santacruz AM, Aschenbrenner AJ, et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat Med. 2021;27(7):1187–96.
Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, et al. A phase 2/3 trial of pabinafusp alfa, IDS fused with anti-human transferrin receptor antibody, targeting neurodegeneration in MPS-II. Mol Ther. 2021;29(2):671–9.
Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, Low RLY, Chiu CL, Fang M, Huang F, et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell. 2021;184(18):4651-4668.e4625.
Burks SR, Kersch CN, Witko JA, Pagel MA, Sundby M, Muldoon LL, Neuwelt EA, Frank JA. Blood–brain barrier opening by intracarotid artery hyperosmolar mannitol induces sterile inflammatory and innate immune responses. Proc Natl Acad Sci USA. 2021;118(18):04.
Beccaria K, Sabbagh A, de Groot J, Canney M, Carpentier A, Heimberger AB. Blood–brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol. 2021;151(1):65–73.
Gasca-Salas C, Fernandez-Rodriguez B, Pineda-Pardo JA, Rodriguez-Rojas R, Obeso I, Hernandez-Fernandez F, Del Alamo M, Mata D, Guida P, Ordas-Bandera C, et al. Blood–brain barrier opening with focused ultrasound in Parkinson’s disease dementia. Nat Commun. 2021;12(1):779.
Mehta RI, Carpenter JS, Mehta RI, Haut MW, Ranjan M, Najib U, Lockman P, Wang P, D’Haese PF, Rezai AR. Blood–brain barrier opening with MRI-guided focused ultrasound elicits meningeal venous permeability in humans with early Alzheimer disease. Radiology. 2021;298(3):654–62.
Anastasiadis P, Gandhi D, Guo Y, Ahmed AK, Bentzen SM, Arvanitis C, Woodworth GF. Localized blood–brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc Natl Acad Sci USA. 2021;118(37):14.
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–88.
Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: a pharmacological target to modify the permeability of the blood–brain barrier. Biol Pharm Bull. 2021;44(10):1380–90.
Tachibana K, Hashimoto Y, Shirakura K, Okada Y, Hirayama R, Iwashita Y, Nishino I, Ago Y, Takeda H, Kuniyasu H, et al. Safety and efficacy of an anti-claudin-5 monoclonal antibody to increase blood–brain barrier permeability for drug delivery to the brain in a non-human primate. J Control Release. 2021;336:105–11.
Li X, Vemireddy V, Cai Q, Xiong H, Kang P, Li X, Giannotta M, Hayenga HN, Pan E, Sirsi SR, et al. Reversibly modulating the blood–brain barrier by laser stimulation of molecular-targeted nanoparticles. Nano Lett. 2021;21(22):9805–15.
Linville RM, Komin A, Lan X, DeStefano JG, Chu C, Liu G, Walczak P, Hristova K, Searson PC. Reversible blood–brain barrier opening utilizing the membrane active peptide melittin in vitro and in vivo. Biomaterials. 2021;275: 120942.
Pearson TS, Gupta N, San Sebastian W, Imamura-Ching J, Viehoever A, Grijalvo-Perez A, Fay AJ, Seth N, Lundy SM, Seo Y, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat Commun. 2021;12(1):4251.