Adolescents’ sedentary time, affect, and contextual factors: An ecological momentary assessment study
Tóm tắt
Few adolescents achieve sufficient levels of physical activity, and many are spending most of their time in sedentary behavior. Affective response following sedentary time may influence motivation to remain sedentary. Ecological Momentary Assessment (EMA) is a real-time data capture methodology that can be used to identify factors influencing sedentary time, such as the context of the home setting, and resulting affective state within a free-living setting. The purpose of this study was to evaluate the relationship between context at home and adolescent sedentary time, and the relationship of sedentary time and subsequent affect.
Adolescents (
Adolescents were 12.6 ± 1.9 y of age on average, about half were White (58%), and engaged in high levels of sedentary behavior during the 30 min prior to the survey (21.4 ± 6.8 min). Most surveys occurred when adolescents were with others (59%) and indoors (88%). In Stage 1, both being alone and being indoors at home were positively associated with sedentary time (
Both contextual factors, being alone and indoors at home, were related to additional time spent sedentary compared to being with someone or outdoors. After adjustment, sedentary time was not related to subsequent positive affect, indicating other factors may be related to adolescent’s positive affect in home settings.
Từ khóa
Tài liệu tham khảo
Wu XY, Han LH, Zhang JH, Luo S, Hu JW, Sun K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: a systematic review. Plos One. 2017;12(11):e0187668. https://doi.org/10.1371/journal.pone.0187668.
Carson V, Tremblay MS, Chaput JP, Chastin SF. Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S294–302. https://doi.org/10.1139/apnm-2016-0026.
Rodriguez-Ayllon M, Cadenas-Sanchez C, Estevez-Lopez F, Munoz NE, Mora-Gonzalez J, Migueles JH, et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. 2019;49(9):1383–410. https://doi.org/10.1007/s40279-019-01099-5.
Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EM, et al. Objectively measured physical activity and sedentary time in youth: the International children's accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.
Moore SA, Faulkner G, Rhodes RE, Brussoni M, Chulak-Bozzer T, Ferguson LJ, et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: a national survey. Int J Behav Nutr Phys Act. 2020;17(1):85. https://doi.org/10.1186/s12966-020-00987-8.
Guan H, Okely AD, Aguilar-Farias N, Del Pozo CB, Draper CE, El Hamdouchi A, et al. Promoting healthy movement behaviours among children during the COVID-19 pandemic. Lancet Child Adolesc Health. 2020;4(6):416–8. https://doi.org/10.1016/S2352-4642(20)30131-0.
Sallis J, Owen N, Fisher E. Health behavior: theory, research, and practice; 2015.
Dunton GF, Kawabata K, Intille S, Wolch J, Pentz MA. Assessing the social and physical contexts of children's leisure-time physical activity: an ecological momentary assessment study. Am J Health Promot. 2012;26(3):135–42. https://doi.org/10.4278/ajhp.100211-QUAN-43.
Pearce M, Saunders DH, Allison P, Turner AP. Indoor and outdoor context-specific contributions to early adolescent moderate to vigorous physical activity as measured by combined diary, accelerometer, and GPS. J Phys Act Health. 2018;15(1):40–5. https://doi.org/10.1123/jpah.2016-0638.
Prince SA, Butler GP, Rao DP, Thompson W. Evidence synthesis - where are children and adults physically active and sedentary? - a rapid review of location-based studies. Health Promot Chronic Dis Prev Can. 2019;39(3):67–103. https://doi.org/10.24095/hpcdp.39.3.01.
Stierlin AS, De Lepeleere S, Cardon G, Dargent-Molina P, Hoffmann B, Murphy MH, et al. A systematic review of determinants of sedentary behaviour in youth: a DEDIPAC-study. Int J Behav Nutr Phys Act. 2015;12(1):133. https://doi.org/10.1186/s12966-015-0291-4.
Kracht CL, Sisson SB. Sibling influence on children's objectively measured physical activity: a meta-analysis and systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000405. https://doi.org/10.1136/bmjsem-2018-000405.
Schneider M, Dunn A, Cooper D. Affect, exercise, and physical activity among healthy adolescents. J Sport Exerc Psychol. 2009;31(6):706–23. https://doi.org/10.1123/jsep.31.6.706.
Wen CKF, Liao Y, Maher JP, Huh J, Belcher BR, Dzubur E, et al. Relationships among affective states, physical activity, and sedentary behavior in children: moderation by perceived stress. Health Psychol. 2018;37(10):904–14. https://doi.org/10.1037/hea0000639.
Dunton GF, Leventhal AM, Rothman AJ, Intille SS. Affective response during physical activity: within-subject differences across phases of behavior change. Health Psychol. 2018;37(10):915–23. https://doi.org/10.1037/hea0000644.
Schneider M, Schmalbach P. Affective response to exercise and preferred exercise intensity among adolescents. J Phys Act Health. 2015;12(4):546–52. https://doi.org/10.1123/jpah.2013-0442.
Dunton GF, Liao Y, Intille S, Huh J, Leventhal A. Momentary assessment of contextual influences on affective response during physical activity. Health Psychol. 2015;34(12):1145–53. https://doi.org/10.1037/hea0000223.
Liao Y, Shonkoff ET, Dunton GF. The acute relationships between affect, physical feeling states, and physical activity in daily life: a review of current evidence. Front Psychol. 2015;6:1975.
Liao Y, Skelton K, Dunton G, Bruening M. A systematic review of methods and procedures used in ecological momentary assessments of diet and physical activity research in youth: An adapted STROBE checklist for reporting EMA studies (CREMAS). J Med Internet Res. 2016;18(6):e151. https://doi.org/10.2196/jmir.4954.
Dunton GF, Whalen CK, Jamner LD, Floro JN. Mapping the social and physical contexts of physical activity across adolescence using ecological momentary assessment. Ann Behav Med. 2007;34(2):144–53. https://doi.org/10.1007/BF02872669.
Dunton GF, Huh J, Leventhal AM, Riggs N, Hedeker D, Spruijt-Metz D, et al. Momentary assessment of affect, physical feeling states, and physical activity in children. Health Psychol. 2014;33(3):255–63. https://doi.org/10.1037/a0032640.
Berkey CS, Rockett HR, Gillman MW, Colditz GA. One-year changes in activity and in inactivity among 10- to 15-year-old boys and girls: relationship to change in body mass index. Pediatrics. 2003;111(4 Pt 1):836–43. https://doi.org/10.1542/peds.111.4.836.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81. https://doi.org/10.1016/j.jbi.2008.08.010.
Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11 2002(246):1–190.
Dunton GF, Whalen CK, Jamner LD, Henker B, Floro JN. Using ecologic momentary assessment to measure physical activity during adolescence. Am J Prev Med. 2005;29(4):281–7. https://doi.org/10.1016/j.amepre.2005.07.020.
Ebesutani C, Okamura K, Higa-McMillan C, Chorpita BF. A psychometric analysis of the positive and negative affect schedule for children-parent version in a school sample. Psychol Assess. 2011;23(2):406–16. https://doi.org/10.1037/a0022057.
Barreira TV, Schuna JM Jr, Mire EF, Katzmarzyk PT, Chaput JP, Leduc G, et al. Identifying children's nocturnal sleep using 24-h waist accelerometry. Med Sci Sports Exerc. 2015;47(5):937–43. https://doi.org/10.1249/MSS.0000000000000486.
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65. https://doi.org/10.1080/02640410802334196.
Dzubur E, Ponnada A, Nordgren R, Yang CH, Intille S, Dunton G, et al. MixWILD: A program for examining the effects of variance and slope of time-varying variables in intensive longitudinal data. Behav Res Methods. 2020;52:1403–27. https://link.springer.com/article/10.3758/s13428-019-01322-1.
Maitland C, Stratton G, Foster S, Braham R, Rosenberg M. The dynamic family home: a qualitative exploration of physical environmental influences on children's sedentary behaviour and physical activity within the home space. Int J Behav Nutr Phys Act. 2014;11(1):157. https://doi.org/10.1186/s12966-014-0157-1.
Cabanas-Sanchez V, Garcia-Cervantes L, Esteban-Gonzalo L, Girela-Rejon MJ, Castro-Pinero J, Veiga OL. Social correlates of sedentary behavior in young people: the UP&DOWN study. J Sport Health Sci. 2020;9(2):189–96. https://doi.org/10.1016/j.jshs.2019.03.005.
Giurgiu M, Koch ED, Ottenbacher J, Plotnikoff RC, Ebner-Priemer UW, Reichert M. Sedentary behavior in everyday life relates negatively to mood: An ambulatory assessment study. Scand J Med Sci Sports. 2019;29(9):1340–51. https://doi.org/10.1111/sms.13448.
Kim J, Conroy DE, Smyth JM. Bidirectional associations of momentary affect with physical activity and sedentary behaviors in working adults. Ann Behav Med. 2020;54(4):268–79. https://doi.org/10.1093/abm/kaz045.
von Haaren B, Loeffler SN, Haertel S, Anastasopoulou P, Stumpp J, Hey S, et al. Characteristics of the activity-affect association in inactive people: an ambulatory assessment study in daily life. Front Psychol. 2013;4:163.
Yang CH, Huh J, Mason TB, Belcher BR, Kanning M, Dunton GF. Mother-child dyadic influences of affect on everyday movement behaviors: evidence from an ecological momentary assessment study. Int J Behav Nutr Phys Act. 2020;17(1):56. https://doi.org/10.1186/s12966-020-00951-6.
Ridley K, Ridgers ND, Salmon J. Criterion validity of the activPAL and ActiGraph for assessing children's sitting and standing time in a school classroom setting. Int J Behav Nutr Phys Act. 2016;13(1):75. https://doi.org/10.1186/s12966-016-0402-x.
An HS, Kim Y, Lee JM. Accuracy of inclinometer functions of the activPAL and ActiGraph GT3X+: a focus on physical activity. Gait Posture. 2017;51:174–80. https://doi.org/10.1016/j.gaitpost.2016.10.014.
Zink J, Belcher BR, Dzubur E, Ke W, O'Connor S, Huh J, et al. Association between self-reported and objective activity levels by demographic factors: ecological momentary assessment study in children. JMIR Mhealth Uhealth. 2018;6(6):e150. https://doi.org/10.2196/mhealth.9592.
Gorely T, Biddle SJ, Marshall SJ, Cameron N. The prevalence of leisure time sedentary behaviour and physical activity in adolescent boys: an ecological momentary assessment approach. Int J Pediatr Obes. 2009;4(4):289–98. https://doi.org/10.3109/17477160902811181.
Clara MI, Allen GA. An epidemiological study of sleep-wake timings in school children from 4 to 11 years old: insights on the sleep phase shift and implications for the school starting times’ debate. Sleep Med. 2020;66:51–60. https://doi.org/10.1016/j.sleep.2019.06.024.
Auhuber L, Vogel M, Grafe N, Kiess W, Poulain T. Leisure Activities of Healthy Children and Adolescents. Int J Environ Res Public Health. 2019;16(12):2078. https://www.mdpi.com/1660-4601/16/12/2078.
Kepper MM, Staiano AE, Katzmarzyk PT, Reis RS, Eyler AA, Griffith DM, et al. Using mixed methods to understand women's parenting practices related to their child's outdoor play and physical activity among families living in diverse neighborhood environments. Health Place. 2020;62:102292. https://doi.org/10.1016/j.healthplace.2020.102292.
Benatti FB, Ried-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47(10):2053–61. https://doi.org/10.1249/MSS.0000000000000654.
Giurgiu M, Koch ED, Plotnikoff RC, Ebner-Priemer UW, Reichert M. Breaking up sedentary behavior optimally to enhance mood. Med Sci Sports Exerc. 2020;52(2):457–65. https://doi.org/10.1249/MSS.0000000000002132.