Adenosine 5′-O-(3-thio)triphosphate (ATPγS) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A

RNA - Tập 9 Số 10 - Trang 1180-1187 - 2003
Matthew L. Peck1, Daniel Herschlag
1Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA.

Tóm tắt

Whereas ATPγS is often considered a nonhydrolyzable substrate for ATPases, we present evidence that ATPγS is a good substrate for the RNA-stimulated nucleotide hydrolysis and RNA unwinding activities of eIF4A. In the presence of saturating single-stranded poly(U) RNA, eIF4A hydrolyzes ATPγS•Mg and ATP•Mg with similar steady-state parameters (KMNTP•Mg = 66 and 58 μM and kcat = 1.0 and 0.97 min−1, respectively). ATPγS•Mg also supports catalysis of RNA unwinding within 10-fold of the rate supported by ATP•Mg. The identical steady-state rate parameters, in comparison with the expected difference in the intrinsic rate of hydrolysis for ATP and ATPγS, suggest a nonchemical rate-limiting step for nucleotide hydrolysis. These results raise caution concerning the assumption that ATPγS is a nonhydrolyzable ATP analog and underscore the utility of thio-substituted NTPs as mechanistic probes.

Từ khóa


Tài liệu tham khảo

1987, J. Biol. Chem., 262, 3826, 10.1016/S0021-9258(18)61430-9

1988, J. Biol. Chem., 263, 6016, 10.1016/S0021-9258(18)68741-1

1978, J. Biol. Chem., 253, 3078, 10.1016/S0021-9258(17)40805-2

10.1021/bi992322p

10.1073/pnas.89.16.7664

1989, J. Biol. Chem., 264, 8491, 10.1016/S0021-9258(18)81817-8

10.1016/S0959-440X(02)00298-1

10.1021/ja983862x

1982, Acc. Chem. Res., 15, 326, 10.1021/ar00082a005

Domanico, P., Mizrahi, V., and Benkovic, S.J. 1986. Observations on the chemistry of phosphorothioate transfer. In: Mechanisms of enzymatic reactions: Stereochemistry, pp. 127–138. Elsevier, Amsterdam, The Netherlands.

1983, Angew Chem. Int. Ed. Engl., 22, 423, 10.1002/anie.198304233

10.1146/annurev.bi.54.070185.002055

10.1126/science.2984773

1993, Curr. Opin. Struct. Biol., 3, 419, 10.1016/S0959-440X(05)80116-2

1984, J. Biol. Chem., 259, 8648, 10.1016/S0021-9258(17)39779-X

10.1021/bi00083a034

10.1021/bi00038a021

10.1002/pro.5560070309

10.1073/pnas.83.9.2850

10.3109/10409239209082567

10.1073/pnas.86.7.2286

10.1021/bi972430g

10.1021/bi9724319

1987, J. Biol. Chem., 262, 2066, 10.1016/S0021-9258(18)61619-9

Merrick, W.C. and Hershey, J.W.B. 1996. The pathway and mechanism of eukaryotic protein synthesis. In: Translational control (eds. J. Hershey et al.), pp. 31–70. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

1993, Mol. Cell. Biol., 13, 6789

10.1017/S1355838299990817

10.1021/bi00317a026

10.1016/0092-8674(85)90200-4

10.1074/jbc.273.13.7579

10.1074/jbc.274.18.12236

10.1074/jbc.M007560200

10.1074/jbc.M100157200

1990, Mol. Cell. Biol., 10, 1134

Segel, I.H. 1993. Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady-state enzyme systems. John Wiley and Sons, New York.

10.1128/JB.184.7.1819-1826.2002

10.1016/S0006-3495(96)79745-X

10.1016/S0092-8674(00)80925-3

10.1021/bi962881l

10.1017/S135583820100108X

10.1016/S1097-2765(01)00329-X

10.1016/0022-2836(77)90269-8

10.1126/science.288.5463.88

10.1016/S0092-8674(00)80716-3

10.1093/emboj/17.10.2926

10.1126/science.256.5055.350

10.1021/bi00425a008

10.1021/bi990836i