Additive empirical force field for hexopyranose monosaccharides

Journal of Computational Chemistry - Tập 29 Số 15 - Trang 2543-2564 - 2008
Olgun Guvench1, Shannon N. Greene2, Ganesh Kamath2, John W. Brady3, Richard M. Venable4, Richard W. Pastor4, Alexander D. MacKerell2
1Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., HSF II-629, Baltimore, Maryland 21201, USA.
2Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., HSF II-629, Baltimore, Maryland 21201
3Department of Food Science, Cornell University, Ithaca, New York 14853
4Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

Tóm tắt

AbstractWe present an all‐atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all‐atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the α‐ and β‐anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas‐phase and condensed‐phase properties of small‐molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides, and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute–water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc‐pVTZ//MP2/6‐31G(d) level of theory. Although not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well‐reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008

Từ khóa


Tài liệu tham khảo

10.1016/j.pbi.2006.09.009

10.1016/j.mcna.2004.04.013

10.1016/j.beem.2006.09.007

10.1146/annurev.biochem.73.011303.073752

10.1016/j.mib.2004.12.008

10.2174/1568026043388141

10.1038/nrd1751

10.1016/j.tibtech.2006.10.004

Dietmar P., 2006, Biotechnol J, 1, 806, 10.1002/biot.200600041

10.1002/jcc.20082

10.1002/jcc.540150910

10.1021/j100011a061

10.1002/(SICI)1096-987X(199606)17:8<1068::AID-JCC14>3.0.CO;2-A

10.1021/ja9529652

Durier V., 1997, J Mol Struct: THEOCHEM, 395, 81, 10.1016/S0166-1280(97)00002-X

10.1016/S0008-6215(00)00042-2

10.1016/S0008-6215(00)00043-4

10.1002/jcc.10119

10.1002/jcc.10271

10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L

10.1002/jcc.10139

10.1002/(SICI)1096-987X(199603)17:4<450::AID-JCC6>3.0.CO;2-T

10.1002/jcc.20820

10.1021/jp973084f

10.1002/jcc.20065

10.1021/ja00153a017

10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G

10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P

1996 Birkhauser Boston M. Schlenkrich J. Brinkman A. D. MacKerell M. Karplus K. M. Merz B. Roux In Membrane Structure and Dynamics 31 81

10.1016/S0006-3495(97)78259-6

10.1002/(SICI)1096-987X(199802)19:3<334::AID-JCC7>3.0.CO;2-U

10.1021/jp0007843

10.1021/ja0118340

10.1021/jp0468096

10.1073/pnas.191362798

10.1021/ja00124a002

10.1021/ja9621760

10.1002/jcc.20090

10.1021/ct600350s

10.1021/jp053182y

Lide D. R., 2003, CRC Handbook of Chemistry and Physics

10.1021/ct050164b

NIST Chemistry WebBook. Available at:http://webbook.nist.gov/chemistry 2005.

10.1021/j100179a013

10.1063/1.445869

10.1073/pnas.0408037102

10.1021/jp0008997

10.1103/PhysRev.46.618

10.1063/1.456153

10.1021/jp0623241

10.1529/biophysj.106.099986

10.1007/BF00533485

10.1021/jp960976r

Computational Chemistry Comparison and Benchmark Database. Available at:http://srdata.nist.gov/cccbdb 2005.

10.1107/S0108768102003890

10.1016/0166-1280(84)80107-4

Guvench O., J Mol Model

10.1021/ja00839a011

Rao V. S. R., 1998, Conformation of Carbohydrates

10.1021/jp0030084

10.1063/1.1574772

10.1021/jp951445q

10.1021/ja0306718

10.1021/jp9940194

Andreae J. H., 1951, Proc Phys Soc B, 64, 1021, 10.1088/0370-1301/64/12/301

Chandler D., 1987, Introduction to Modern Statistical Mechanics

10.1002/bip.360320508

10.1103/PhysRev.182.280

1994 Kluwer Academic Publishers The Netherlands R. W. Pastor G. R. Luckhurst C. A. Veracini In The Molecular Dynamics of Liquid Crystals 85 138

10.1021/jp9614658

2001 Marcel Deckker New York J. E. Straub O. M. Becker A. D. MacKerell B. Roux M. Watanabe In Computational Biochemistry and Biophysics 199 220

10.1021/ma00148a011

10.1021/jp004475o

M. J. Frisch G. W. Trucks H. B. Schlegel G. E. Scuseria M. A. Robb J. R. Cheeseman J. A. Montgomery T. Vreven K. N. Kudin J. C. Burant J. M. Millam S. S. Iyengar J. Tomasi V. Barone B. Mennucci M. Cossi G. Scalmani N. Rega G. A. Petersson H. Nakatsuji M. Hada M. Ehara K. Toyota R. Fukuda J. Hasegawa M. Ishida T. Nakajima K. Honda O. Kitao H. Nakai M. Klene T. W. Li J. E. Knox H. P. Hratchian J. B. Cross C. Adamo J. Jaramillo R. Gomperts R. E. Stratmann O. Yazyev A. J. Austin R. Cammi C. Pomelli J. W. Ochterski P. Y. Ayala K. Morokuma G. A. Voth P. Salvador J. J. Dannenberg V. G. Zakrzewski S. Dapprich A. D. Daniels M. C. Strain O. Farkas D. K. Malick A. D. Rabuck K. Raghavachari J. B. Foresman J. V. Ortiz Q. Cui A. G. Baboul S. Clifford J. Cioslowski B. B. Stefanov G. Liu A. Liashenko P. Piskorz I. Komaromi R. L. Martin D. J. Fox T. Keith M. A. Al‐Laham C. Y. Peng A. Nanayakkara M. Challacombe P. M. W. Gill B. Johnson W. Chen M. W. Wong C. Gonzalez J. A. Pople 2003 Gaussian Pittsburgh

10.1002/jcc.540040211

10.1021/j100059a038

Allen M. P., 1987, Computer Simulation of Liquids

10.1063/1.464397

10.1002/jcc.540150702

1970 Academic Press New York R. W. Hockney B. Alder S. Fernbach M. Rotenberg In Methods in Computational Physics 136 211

10.1016/0021-9991(77)90098-5

10.1080/00268978400101201

10.1103/PhysRevA.31.1695

10.1063/1.470648

10.1126/science.220.4598.671

10.1063/1.1699114

10.1021/jp048502c

10.1063/1.1587119

10.1002/jcc.540130812

Grossfield A.WHAM: An Implementation of the Weighted Histo‐gramAnalysis Method. Available at:http://dasher.wustl.edu/alan/wham 2003.