Adaptive neural network backstepping control for a class of uncertain fractional-order chaotic systems with unknown backlash-like hysteresis

AIP Advances - Tập 6 Số 8 - 2016
Yimin A. Wu1,2, Hui Lv3,4
12Department of Applied Mathematics, Huainan Normal University, Huainan 232038, China
2Suzhou University 1 School of Mathematics and Statistics, , Suzhou 234000, China
31School of Mathematics and Statistics, Suzhou University, Suzhou 234000, China
4Huainan Normal University 2 Department of Applied Mathematics, , Huainan 232038, China

Tóm tắt

In this paper, we consider the control problem of a class of uncertain fractional-order chaotic systems preceded by unknown backlash-like hysteresis nonlinearities based on backstepping control algorithm. We model the hysteresis by using a differential equation. Based on the fractional Lyapunov stability criterion and the backstepping algorithm procedures, an adaptive neural network controller is driven. No knowledge of the upper bound of the disturbance and system uncertainty is required in our controller, and the asymptotical convergence of the tracking error can be guaranteed. Finally, we give two simulation examples to confirm our theoretical results.

Từ khóa


Tài liệu tham khảo

1998, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications

2014, Automatica, 50, 547, 10.1016/j.automatica.2013.11.018

2014, Communications in Nonlinear Science and Numerical Simulation, 19, 2951, 10.1016/j.cnsns.2014.01.022

2015, Applied Mathematics and Computation, 257, 274, 10.1016/j.amc.2014.12.103

2015, Communications in Nonlinear Science and Numerical Simulation, 22, 650, 10.1016/j.cnsns.2014.10.008

2015, International Journal of Robust and Nonlinear Control, 25, 2207, 10.1002/rnc.3202

2015, Chinese Physics B, 24, 090505, 10.1088/1674-1056/24/9/090505

2015, Acta Physica Sinaca, 64, 070503, 10.7498/aps.64.070503

2016, Neural Networks, 73, 36, 10.1016/j.neunet.2015.09.012

2016, Neural Networks, 73, 77, 10.1016/j.neunet.2015.10.010

2016, AIP Advances, 6, 045011, 10.1063/1.4947300

2015, Communications in Nonlinear Science and Numerical Simulation, 25, 27, 10.1016/j.cnsns.2014.11.012

2016, Journal of Computational and Applied Mathematics, 296, 815, 10.1016/j.cam.2015.11.008

2014, International Journal of Robust and Nonlinear Control

2009, Automatica, 45, 1965, 10.1016/j.automatica.2009.04.003

2012, Chinese Physics B, 21, 120505, 10.1088/1674-1056/21/12/120505

2004, IEEE Transactions on Neural Networks, 15, 674, 10.1109/TNN.2004.826130

2011, Expert Systems with Applications, 38, 14744, 10.1016/j.eswa.2011.05.006

2013, IEEE Transactions on Fuzzy Systems, 21, 134, 10.1109/TFUZZ.2012.2204065

2009, IEEE Transactions on Fuzzy Systems, 17, 1059, 10.1109/TFUZZ.2009.2021648

2015, Entropy, 17, 7185, 10.3390/e17107185

2015, Information Sciences, 301, 27, 10.1016/j.ins.2014.12.039

2016, Neurocomputing, 175, 10, 10.1016/j.neucom.2015.10.006

2016, Neurocomputing, 171, 313, 10.1016/j.neucom.2015.06.058

2016, International Journal of Robust and Nonlinear Control, 26, 759, 10.1002/rnc.3336

1977, Physics of the Earth and Planetary Interiors, 13, 260, 10.1016/0031-9201(77)90108-X

1995, Precision engineering, 17, 211, 10.1016/0141-6359(95)00002-U

2004, Automatic Control, IEEE Transactions on, 49, 1751, 10.1109/TAC.2004.835398

2012, Information Sciences, 198, 130, 10.1016/j.ins.2012.02.050

2013, Differential models of hysteresis

2014, Neural Networks and Learning Systems, IEEE Transactions on, 25, 947, 10.1109/TNNLS.2013.2283879

2012, Automatic Control, IEEE Transactions on, 57, 2627, 10.1109/TAC.2012.2190208

2014, Automatic Control, IEEE Transactions on, 59, 2170, 10.1109/TAC.2014.2298732

2014, Power Electronics, IEEE Transactions on, 29, 1382, 10.1109/TPEL.2013.2261554

2013, Mechatronics, IEEE/ASME Transactions on, 18, 1498, 10.1109/TMECH.2012.2205265

2014, Mechanical systems and signal processing, 49, 209, 10.1016/j.ymssp.2014.04.012

2013, Mechanical Systems and Signal Processing, 36, 182, 10.1016/j.ymssp.2012.10.004

2014, Neural Networks and Learning Systems, IEEE Transactions on, 25, 2129, 10.1109/TNNLS.2014.2305717

2000, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30, 753, 10.1109/3468.895898

2015, IEEE Transactions on Fuzzy Systems, 23, 302, 10.1109/TFUZZ.2014.2312026

2015, Nonlinear Analysis: Hybrid Systems, 16, 72, 10.1016/j.nahs.2014.11.002

2015, Cogent Engineering, 2, 1009273, 10.1080/23311916.2015.1009273

2015, Complexity

2015, Neurocomputing, 165, 395, 10.1016/j.neucom.2015.03.029

2015, 7616, 10.1109/CDC.2015.7403423

2011, IEEE Transactions on Fuzzy Systems, 19, 807, 10.1109/TFUZZ.2011.2144600

2013, Neurocomputing, 99, 15, 10.1016/j.neucom.2012.05.011

2000, Control Theory and Applications, IEE Proceedings-, 303

2012, Expert Systems with Applications, 39, 8162, 10.1016/j.eswa.2012.01.151

2015, Journal of Intelligent & Robotic Systems, 80, 15, 10.1007/s10846-014-0150-6

2015, Neurocomputing, 149, 106, 10.1016/j.neucom.2013.09.069

2016, Circuits, Systems, and Signal Processing, 35, 811, 10.1007/s00034-015-0105-6

2015, Nonlinear Dynamics, 82, 1343, 10.1007/s11071-015-2242-7

2015, IEEE transactions on cybernetics, 45, 574, 10.1109/TCYB.2014.2331460

2013, Abstract and Applied Analysis, 940573

2015, Automatica, 57, 29, 10.1016/j.automatica.2015.03.033

2016, Information Sciences, 360, 273, 10.1016/j.ins.2016.04.033

2013, IEEE Transactions on Fuzzy Systems, 21, 1123, 10.1109/TFUZZ.2013.2244899

2016, Science China Technological Sciences, 59, 387, 10.1007/s11431-016-6006-5

2013, Nonlinear Dynamics, 74, 745, 10.1007/s11071-013-1002-9

2015, Signal Processing, 107, 361, 10.1016/j.sigpro.2014.03.042

2005, Chaos, Solitons & Fractals, 26, 1125, 10.1016/j.chaos.2005.02.023

2015, Complexity, 21, 211, 10.1002/cplx.21598