Adaptive local surface refinement based on LR NURBS and its application to contact
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88
Autodesk (2015) T-splines plug-in. http://www.autodesk.com
Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bezier extraction of NURBS. Int J Numer Methods Eng 87:15–47
Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75
Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806
Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York
Cox G (1971) The numerical evaluation of B-splines. DNAC, National Physical Laboratory, Division of Numerical Analysis and Computing
De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300
De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20
Demkowicz L, Oden J, Rachowicz W, Hardy O (1989) Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure. Comput Methods Appl Mech Eng 77(1–2):79–112
Dimitri R, Lorenzis LD, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54(2):369–388
Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech. doi: 10.1007/s00466-017-1410-7
Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356
Hager C, Hauret P, Le Tallec P, Wohlmuth BI (2012) Solving dynamic contact problems with local refinement in space and time. Comput Methods Appl Mech Eng 201:25–41
Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195
Johannessen KA, Kumar M, Kvamsdal T (2015) Divergence-conforming discretization for stokes problem on locally refined meshes using LR B-splines. Comput Methods Appl Mech Eng 293:38–70
Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514
Johannessen KA, Remonato F, Kvamsdal T (2015) On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines. Comput Methods Appl Mech Eng 291:64–101
Kumar M, Kvamsdal T, Johannessen KA (2015) Simple a posteriori error estimators in adaptive isogeometric analysis. Comput Math Appl 70(7):1555–1582. High-Order Finite Element and Isogeometric Methods
Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin
Lee C, Oden J (1994) A posteriori error estimation of $$h$$ h - $$p$$ p finite element approximations of frictional contact problems. Comput Methods Appl Mech Eng 113(1):11–45
Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741
McNeel (2012) Rhinoceros 5. http://www.mcneel.com
Nørtoft P, Dokken T (2014) Isogeometric analysis of Navier–Stokes flow using locally refinable B-splines. Springer, Cham
Roohbakhshan F, Sauer RA (2016) Isogeometric nonlinear shell elements for thin laminated composites based on analytical thickness integration. J Micromech Mol Phys 01(03 & 04):1640010 1-24
Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395
Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101(4):251–280
Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68
Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2012.03.017
Scott M, Li X, Sederberg T, Hughes T (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213:206–222
Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88(2):126–156
Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484
Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186
Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112
Thomas D, Scott M, Evans J, Tew K, Evans E (2015) Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput Methods Appl Mech Eng 284:55–105
Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin
Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, London