Adaptive local surface refinement based on LR NURBS and its application to contact

Computational Mechanics - Tập 60 Số 6 - Trang 1011-1031 - 2017
Christopher Zimmermann1, Roger A. Sauer1
1Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ainsworth M, Oden J (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88

Autodesk (2015) T-splines plug-in. http://www.autodesk.com

Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bezier extraction of NURBS. Int J Numer Methods Eng 87:15–47

Bressan A (2013) Some properties of LR-splines. Comput Aided Geom Des 30(8):778–794

Corbett CJ, Sauer RA (2014) NURBS-enriched contact finite elements. Comput Methods Appl Mech Eng 275:55–75

Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806

Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

Cox G (1971) The numerical evaluation of B-splines. DNAC, National Physical Laboratory, Division of Numerical Analysis and Computing

De Boor C (1972) On calculating with B-splines. J Approx Theory 6(1):50–62

De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300

De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49:1–20

Demkowicz L, Oden J, Rachowicz W, Hardy O (1989) Toward a universal h-p adaptive finite element strategy, part 1. Constrained approximation and data structure. Comput Methods Appl Mech Eng 77(1–2):79–112

Dimitri R, Lorenzis LD, Wriggers P, Zavarise G (2014) NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding. Comput Mech 54(2):369–388

Dimitri R, Zavarise G (2017) Isogeometric treatment of frictional contact and mixed mode debonding problems. Comput Mech. doi: 10.1007/s00466-017-1410-7

Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

Farin G (1992) From conics to NURBS: a tutorial and survey. IEEE Comput Graph Appl 12(5):78–86

Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. SIGGRAPH Comput Graph 22(4):205–212

Hager C, Hauret P, Le Tallec P, Wohlmuth BI (2012) Solving dynamic contact problems with local refinement in space and time. Comput Methods Appl Mech Eng 201:25–41

Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

Johannessen KA, Kumar M, Kvamsdal T (2015) Divergence-conforming discretization for stokes problem on locally refined meshes using LR B-splines. Comput Methods Appl Mech Eng 293:38–70

Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514

Johannessen KA, Remonato F, Kvamsdal T (2015) On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines. Comput Methods Appl Mech Eng 291:64–101

Kumar M, Kvamsdal T, Johannessen KA (2015) Simple a posteriori error estimators in adaptive isogeometric analysis. Comput Math Appl 70(7):1555–1582. High-Order Finite Element and Isogeometric Methods

Laursen TA (2002) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

Lee C, Oden J (1994) A posteriori error estimation of $$h$$ h - $$p$$ p finite element approximations of frictional contact problems. Comput Methods Appl Mech Eng 113(1):11–45

Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200(5–8):726–741

McNeel (2012) Rhinoceros 5. http://www.mcneel.com

Mourrain B (2014) On the dimension of spline spaces on planar T-meshes. Math Comput 83(286):847–871

Nørtoft P, Dokken T (2014) Isogeometric analysis of Navier–Stokes flow using locally refinable B-splines. Springer, Cham

Roohbakhshan F, Sauer RA (2016) Isogeometric nonlinear shell elements for thin laminated composites based on analytical thickness integration. J Micromech Mol Phys 01(03 & 04):1640010 1-24

Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395

Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101(4):251–280

Sauer RA, Duong TX, Corbett CJ (2014) A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements. Comput Methods Appl Mech Eng 271:48–68

Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2012.03.017

Scott M, Li X, Sederberg T, Hughes T (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213:206–222

Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88(2):126–156

Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484

Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186

Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112

Thomas D, Scott M, Evans J, Tew K, Evans E (2015) Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput Methods Appl Mech Eng 284:55–105

Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, London