Adaptive evolution and inherent tolerance to extreme thermal environments
Tóm tắt
When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment. Phage ΦX174 was subjected to both elevated (50°C) and extreme (70°C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50°C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75°C, reduced the survival rate even more. Isolates which survived the initial treatment at 70°C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments. Using the model organism ΦX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that ΦX174 is capable of survival.
Tài liệu tham khảo
Yang J, Wang ZL, Zhao XQ, Wang de P, Qi de L, Xu BH, Ren YH, Tian HF: Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLoS One. 2008, 3: e1472-10.1371/journal.pone.0001472.
Schmidt PS, Serrão EA, Pearson GA, Riginos C, Rawson PD, Hilbish TJ, Brawley SH, Trussell GC, Carrington E, Wethey DS, Grahame JW, Bonhomme F, Rand DM: Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci. Ecology. 2008, 89 (Suppl 11): 91-107. 10.1890/07-1162.1.
Le Conte Y, Navajas M: Climate change: impact on honey bee populations and diseases. Rev Sci Tech. 2008, 27: 485-97.
Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L: Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution. 2009, 63: 1867-1878. 10.1111/j.1558-5646.2009.00679.x.
Knies JL, Kingsolver JG, Burch CL: Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages. Am Nat. 2009, 173: 419-430. 10.1086/597224.
Hayashi M, Aoyama A, Richardson DL, Hayashi MN: Biology of the bacteriophage ΦX174. Phages: Their Role in Bacterial Pathogenesis and Biotechnology. Edited by: Waldor MK, Friedman DI, Adhya SL. 2005, Washington, D.C.: ASM Press, 2: 1-71.
Suttle CA: Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007, 5: 801-812. 10.1038/nrmicro1750.
Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F: Phage community dynamics in hot springs. Appl Environ Microbiol. 2004, 70: 1633-1640. 10.1128/AEM.70.3.1633-1640.2004.
Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, Wommack KE: Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J. 2008, 2: 1112-1121. 10.1038/ismej.2008.73.
Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D: Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol. 2008, 74: 4164-4174. 10.1128/AEM.02598-07.
Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H: Bacteria beneath the West Antarctic ice sheet. Environ Microbiol. 2009, 11: 609-615. 10.1111/j.1462-2920.2008.01831.x.
Metagenomics of Antarctic Lakes: a Model for Defining Microbial Biogeochemical Processes in the Cold. [http://gcmd.nasa.gov/records/AADC_ASAC_2899.html]
Dowell CE: Growth of bacteriophage phiX-174 at elevated temperatures. J Gen Virol. 1980, 49: 41-50. 10.1099/0022-1317-49-1-41.
Kadowaki K, Shibata T, Takeuchi K, Himeno M, Sakai H, Komano T: Identification of temperature-resistant bacteriophage phiX174 mutant. J Gen Virol. 1987, 68: 2443-2447. 10.1099/0022-1317-68-9-2443.
Baltz RH, Bingham PM, Drake JW: Heat mutagenesis in bacteriophage T4: The transition pathway. Proc Natl Acad Sci USA. 1976, 73: 1269-1273. 10.1073/pnas.73.4.1269.
Bull JJ, Badgett MR, Wichman HA: Big-benefit mutations in a bacteriophage inhibited with heat. Mol Biol Evol. 2000, 17: 942-950.
Knies JL, Izem R, Supler KL, Kingsolver JG, Burch CL: The genetic basis of thermal reaction norm evolution in lab and natural phage populations. PLoS Biol. 2006, 4: e201-10.1371/journal.pbio.0040201.
McBride RC, Ogbunugafor CB, Turner PE: Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol Biol. 2008, 8: 231-10.1186/1471-2148-8-231.
Holder KK, Bull JJ: Profiles of adaptation in two similar viruses. Genetics. 2001, 159: 1393-1404.
Crill WD, Wichman HA, Bull JJ: Evolutionary reversals during viral adaptation to alternating hosts. Genetics. 2000, 154: 27-37.
Mongold JA, Bennett AF, Lenski RE: Evolutionary adaptation to temperature. 4. Adaptation of Escherichia coli at a niche boundary. Evolution Int J Org Evolution. 1996, 50: 35-43.
Bennett AF, Lenski RE: Evolutionary Adaptation to Temperature. 2. Thermal Niches of Experimental Lines of Escherichia coli. Evolution. 1993, 47: 1-12. 10.2307/2410113.
Quance M, Travisano M: Effects of temperature on the fitness cost of resistance to bacteriophage T4 in Escherichia coli. Evolution. 2009, 63: 1406-1416. 10.1111/j.1558-5646.2009.00654.x.
Bull JJ, Badgett MR, Springman R, Molineux IJ: Genome properties and the limits of adaptation in bacteriophages. Evolution. 2004, 58: 692-701.
Hafenstein S, Fane BA: phi X174 genome-capsid interactions influence the biophysical properties of the virion: evidence for a scaffolding-like function for the genome during the final stages of morphogenesis. J Virol. 2002, 76: 5350-5396. 10.1128/JVI.76.11.5350-5356.2002.
Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG: Structure of a viral procapsid with molecular scaffolding. Nature. 1997, 389: 308-313. 10.1038/38537.
Dierkes LE, Peebles CL, Firek BA, Hendrix RW, Duda RL: Mutational analysis of a conserved glutamic acid required for self-catalyzed cross-linking of bacteriophage HK97 capsids. J Virol. 2009, 83: 2088-2098. 10.1128/JVI.02000-08.
Da Poian AT, Carneiro FA, Stauffer F: Viral inactivation based on inhibition of membrane fusion: understanding the role of histidine protonation to develop new viral vaccines. Protein Pept Lett. 2009, 16: 779-785. 10.2174/092986609788681823.
Inagaki M, Tanaka A, Suzuki R, Wakashima H, Kawaura T, Karita S, Nishikawa S, Kashimura N: Characterization of the binding of spike H protein of bacteriophage phiX174 with receptor lipopolysaccharides. J Biochem. 2000, 127: 577-583.
Haase-Pettingell C, Betts S, Raso SW, Stuart L, Robinson A, King J: Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Sci. 2001, 10: 397-410. 10.1110/ps.34701.
Schrag SJ, Perrot V, Levin BR: Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc Biol Sci. 1997, 264: 1287-1291. 10.1098/rspb.1997.0178.
Deber CM, Khan AR, Li Z, Joensson C, Glibowicka M, Wang J: Val→ Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci USA. 1993, 90: 11648-11652. 10.1073/pnas.90.24.11648.
Travisano M, Mongold JA, Bennett AF, Lenski RE: Experimental tests of the roles of adaptation, chance, and history in evolution. Science. 1995, 267: 87-90. 10.1126/science.7809610.
McKenna R, Ilag L, Rossman M: Analysis of the Single-Stranded DNA Bacteriophage ΦX174, Refined at a Resolution of 3.0?. J Mol Biol. 1994, 237: 517-543. 10.1006/jmbi.1994.1253.
Ruboyianes MV, Chen M, Dubrava MS, Cherwa JE, Fane BA: The expression of N-Terminal deletion DNA pilot proteins inhibits the early stages of ΦX174 replication. J Virol. 2009, 83: 9952-9956. 10.1128/JVI.01077-09.
Ilag LL, Tuech JK, Beisner LA, Sumrada RA, Incardona NL: Role of DNA-Protein Interactions in Bacteriophage ΦX174 DNA Injection. J Mol Biol. 1993, 229: 671-684. 10.1006/jmbi.1993.1071.
Inagaki M, Tanaka A, Suzuki R, Wakashima H, Kawaura T, Karita S, Nishikawa S, Kashimura N: Characterization of the binding of spike H protein of bacteriophage ΦX174 with receptor lipopolysaccharides. J Biochem. 2000, 127: 577-583.
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, Totowa: Humana Press, 132: 365-386. full_text.
BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]