Adaptive Neural Compliant Force-Position Control of Serial PAM Robot
Tóm tắt
This paper proposes the novel adaptive neural network (ADNN) compliant force/position control algorithm applied to a highly nonlinear serial pneumatic artificial muscle (PAM) robot as to improve its compliant force/position output performance. Based on the new adaptive neural ADNN model which is dynamically identified to adapt well all nonlinear features of the 2-axes serial PAM robot, a new hybrid adaptive neural ADNN-PID controller was initiatively implemented for compliant force/position controlling the serial PAM robot system used as an elbow and wrist rehabilitation robot which is subjected to not only the internal coupled-effects interactions but also the external end-effecter contact force variations (from 10[N] up to critical value 30[N]). The experiment results have proved the feasibility of the new control approach compared with the optimal PID control approach. The novel proposed hybrid adaptive neural ADNN-PID compliant force/position controller successfully guides the upper limb of subject to follow the linear and circular trajectories under different variable end-effecter contact force levels.
Tài liệu tham khảo
Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatron. 2(4), 259–267 (1997)
Beyl, P., Damme, M.V., Ham, R.V., Vanderborght, B., Lefeber, D.: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Trans. Mechatron. 19(3), 1046–1056 (2013)
Aschemann, H., Schindele, D.: Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators. IEEE Trans. Ind. Electron. 55(11), 3855–3864 (2008)
Cozens, J.A.: Robotic assistance of an active upper limb exercise in neurological impaired patients. IEEE Tran. Rehab. Eng. 7(4), 254–256 (1999)
Jeh, T.J., Wu, M.J., Lu, T.J., Wu, F.K., Huang, C.R.: Control of McKibben pneumatic muscles for a power-assist lower-limb orthosis. Mechatronics 20(6), 686–697 (2010)
Liem, D.T., Park, H.G., Ahn, K.K.: A feedforward NN fuzzy grey predictor-based controller for force control of an electro-hydraulic actuator. Int. J. Precis. Eng. Manuf. 17(3), 309–321 (2016)
Sun, N., Wu, Y., Fang, Y., Chen, H., Lu, B.: Nonlinear continuous global stabilization control for under-actuated RTAC systems: Design, analysis, and experimentation, IEEE/ASME Transactions on Mechatronics. online published, doi:10.1109/TMECH.2016.2631550 (2016)
Sun, N., Fang, Y., Chen, H., Lu, B.: Amplitude-saturated nonlinear output feedback anti-swing control for under-actuated cranes with double-pendulum cargo dynamics, IEEE Transactions on Industrial Electronics. online published, doi:10.1109/TIE.2016.2623258 (2016)
Jahanabadi, H., Mailah, M., Md Zain, M.Z., Hooi, H.M.: Active force with fuzzy logic control of a Two-Link arm driven by pneumatic artificial muscles. J. Bionic Eng. 8, 474–484 (2011)
Hall, K.L., Phillips, C.A., Reynolds, D.B., Mohler, S.R., Rogers, D.B., Neidhard-Doll, A.T.: Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise: Part I–dynamic test station and human quadriceps dynamic simulator. Comput. Methods Biomech. Biomed. Engin. 17(12), 1391–1401 (2014)
Kobayashi, H., Uchimura, A., Shiiba, T.: Development of muscle suit for upper body. Proc. Intell. Robot. Syst. (IROS 2003-IEEE Int. Conference) 4, 3624–3629 (2003)
Hall, K.L., Phillips, C.A., Reynolds, D.B., Mohler, S.R., Rogers, D.B., Neidhard-Doll, A.T.: Haptic Control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise: Part II: control development and testing. Comput. Methods Biomech. Biomed. Engin. 18(1), 1–14 (2015)
Liu, H., Yan, J., Zhou, Y., Li, H., Li, C.: A novel dynamic cardiac simulator utilizing pneumatic artificial muscle., Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 07/2013; 2013:715–718
Kawamura, T., Takanaka, K., Nakamura, T., Osumi, H.: Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance. IEEE International Conference on Rehabilitation Robotics: [proceedings] 06/2013;2013:1–6
Tri, V., Tjahjowidodo, T., Ramon, H., Van Brussel, H.: Cascade Position control of a single pneumatic artificial muscle-mass system with hysteresis compensation. Mechatronics, Elsevier 20 (3), 402–414 (2010)
Ganguly, S., Garg, A., Pasricha, A., Dwivedy, S.K.: Control of pneumatic artificial muscle system through experimental modelling. Mechatronics 22(8), 1135–1147 (2012)
Egawa, M., Watanabe, T., Nakamura, T.: Development of a wearable haptic device with pneumatic artificial muscles and MR brake. IEEE Virtual Reality (VR), Arles 2015, 173–174 (2015)
Ahn, K.K., Nguyen, H.T.C.: Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network. Mechatronics 17, 255–262 (2007)
Jiang, X., Wang, Z., Zhang, C., Yang, L.: Fuzzy neural network control of the rehabilitation robotic arm driven by pneumatic muscles. Ind. Robot An Int. J. 42(1), 36–43 (2015)
Song, C., Xie, S., Zhou, Z., Hu, Y.: Modeling of pneumatic artificial muscle using a hybrid artificial neural network approach. Mechatronics 31, 124–131 (2015)
Fan, J., Zhong, J., Zhao, J., Zhu, Y.: BP Neural network tuned PID controller for position tracking of a pneumatic artificial muscle. Technol. Heal. Care 23(s2), S231–S238 (2015)
Sabzehmeidani, Y., Mailah, M., Hussein, M., Gatavi, E., Md Zain, M.Z.: A hybrid fuzzy-based robust controller for pneumatically actuated micro-robot. Int. Rev. Model. Simul. 3, 1308–1316 (2010)
Zhu, X., Tao, G., Yao, B., Cao, J.: Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica 44, 2248–2257 (2008)
Ba, D.X., Dinh, T.Q., Ahn, K.K.: An integrated intelligent nonlinear control method for a pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 21(4), 1835–1845 (2016)
Xu, B., Yang, C., Shi, Z.: Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 635–641 (2014)
Xu, B, Shi, Z, Yang, C.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in Strict-Feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014)
Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2563–2575 (2015)
Boerlage, M., Steinbuch, M., Lambrechts, P., van de Wal, M.: Model–Based Feedforward for Motion Systems. Proceedings of IEEE Conference on Control Applications, 2003, pp. 1158–1163
Balasubramanian, K., Rattan, K.S.: Feed-forward control of a non-linear pneumatic muscle system using fuzzy logic. In: Proceedings of IEEE Int., Conf., Fuzzy Systems, vol. 1, pp. 272–277 (2003)