Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1

Wiley - Tập 16 Số 14 - Trang 1879-1886 - 2002
Keith Baar1, Adam R. Wende2, Terry E. Jones2, Matthew Marison2, Lorraine A. Nolte2, May Chen2, Daniel P. Kelly2, John O. Holloszy2
1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 USA
2Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Booth F. W., 1997, Handbook of Physiology, Section 12, Exercise Regulation and Integration of Multiple Systems, 1075

Holloszy J. O., 1967, Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle, J. Biol. Chem, 242, 2278

Oscai L. B., 1971, Biochemical adaptations in muscle II. Response of mitochondrial ATPase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise, J. Biol. Chem, 246, 6968

10.1016/0006-291X(70)90017-3

Chi M. M. Y., 1983, Effects of detraining on enzymes of energy metabolism in individual human muscle fibers, Am. J. Physiol, 244

10.1172/JCI106730

Yan Z., 1995, Increased muscle carnitine palmitoyltransferase II mRNA after increased contractile activity, Am. J. Physiol, 268

10.1111/j.1432-1033.1974.tb03713.x

10.1111/j.1749-6632.1977.tb38219.x

10.1007/BF00588462

10.1152/jappl.1984.56.4.831

10.1152/jappl.1985.59.3.853

Dudley G. A., 1987, Influence of mitochondrial content on the sensitivity of respiratory control, J. Biol. Chem, 262, 9109, 10.1016/S0021-9258(18)48054-4

Constable S. H., 1987, Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training, Am. J. Physiol, 253, 10.1152/ajpcell.1987.253.2.C316

10.1016/0014-5793(90)80960-Q

Goodyear L. J., 1992, Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training, Diabetes, 41, 1091, 10.2337/diab.41.9.1091

Ren J.‐M., 1994, Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin‐stimulated glycogen storage in muscle, J. Biol. Chem, 269

10.1007/BFb0036123

10.1152/jappl.2001.90.3.1137

Hood D. A., 2000, Assembly of the cellular powerhouse: current issues in muscle mitochondrial biogenesis, ESSR, 28, 68

10.1016/1050-1738(95)00129-8

10.1101/gad.4.6.1023

10.1073/pnas.91.4.1309

Braidotti G., 1993, Identification of regulatory sequences in the gene for 5‐aminolevulinate synthase from rat, J. Biol. Chem, 268, 1109, 10.1016/S0021-9258(18)54048-5

10.1016/S0092-8674(00)81410-5

10.1016/S0092-8674(00)80611-X

10.1172/JCI10268

10.1128/MCB.20.5.1868-1876.2000

Gulick T., 1994, The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression, Proc. Natl. Acad. Sci. USA, 91, 10.1073/pnas.91.23.11012

Brandt J. M., 1998, Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator‐activated receptor c, J. Biol. Chem, 273, 10.1074/jbc.273.37.23786

10.1073/pnas.061035098

Li B., 1999, Respiratory uncoupling induces o‐aminolevulinate synthase expression through a nuclear respiratory factor‐1‐dependent mechanism in HeLa cells, J. Biol. Chem, 274

Ploug T., 1990, Effect of endurance‐training on glucose transport capacity and glucose transporter expression in rat skeletal muscle, Am. J. Physiol, 259

10.1093/nar/11.5.1475

10.1210/me.8.5.614

Holloszy J. O., 1979, Induction of o‐aminolevulinic acid synthetase in muscle by exercise or thyroxine, Am. J. Physiol, 236

10.1016/S0304-4165(98)00018-X

10.1006/bbrc.2000.3134

Kakuma T., 2000, Role of leptin in peroxisome proliferator‐activated receptor gamma coactivator‐1 expression, ENDO J, 141, 4576

10.1139/y79-039

Barnard R. J., 1970, Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties, J. Appl. Physiol, 28, 762, 10.1152/jappl.1970.28.6.762

10.1016/0006-291X(90)91374-2

Weinstein S. P., 1994, Thyroid hormone increases basal and insulin‐stimulated glucose transport in skeletal muscle. The role of GLUT4 glucose transporter expression, Diabetes, 43, 1185, 10.2337/diab.43.10.1185

Ren J. M., 1993, Adaptation of muscle to creatine depletion: Effect on GLUT‐4 glucose transporter expression, Am. J. Physiol, 264

Holmes B. F., 1999, Chronic activation of 5'‐AMP‐activated protein kinase increases GLUT‐4, hexokinase, and glycogen in muscle, J. Cell. Physiol, 87, 1990

10.1152/jappl.2000.88.3.1072

10.2337/diabetes.47.8.1369

Hayashi T., 2000, Metabolic stress and altered glucose transport. Activation of AMP‐activated protein kinase as a unifying coupling mechanism, Diabetes, 48, 537

10.2337/diabetes.48.8.1667

Henriksen E. J., 1990, Glucose transporter protein content and glucose transport capacity in rat skeletal muscles, Am. J. Physiol, 259

10.1042/bj2700397

10.1146/annurev.cb.07.110191.002321

Chau C. A., 1992, Nuclear respiratory factor 1 activation sites in genes encoding the y‐subunit of ATP synthase, eukaryotic initiation factor 2c, and tyrosine aminotransferase, J. Biol. Chem, 267, 6999, 10.1016/S0021-9258(19)50527-0

10.1016/0378-1119(95)00029-6