CÁC THÍCH ỨNG TRONG CHUYỂN HÓA NĂNG LƯỢNG VÀ MỞ RỘNG CÁC GIA ĐÌNH GEN ĐƯỢC TIẾT LỘ QUA TRANSCIPTOMICS SO SÁNH CỦA BA LOÀI CÔN TRÙNG TRUYỀN BỆNH CHAGAS

Springer Science and Business Media LLC - Tập 19 - Trang 1-23 - 2018
Jesús Martínez-Barnetche1, Andrés Lavore2, Melina Beliera2, Juan Téllez-Sosa1, Federico A. Zumaya-Estrada1, Victorio Palacio2, Ernestina Godoy-Lozano1, Rolando Rivera-Pomar2,3, Mario Henry Rodríguez1
1Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
2Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
3Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Tóm tắt

Bệnh Chagas là một bệnh nhiễm ký sinh trùng do Trypanosoma cruzi gây ra. Đây là một vấn đề sức khỏe cộng đồng quan trọng ảnh hưởng đến khoảng bảy đến tám triệu người ở Châu Mỹ. Một số lượng lớn các loài côn trùng triatomine hút máu, sống trong nhiều môi trường sinh thái tự nhiên và nhân tạo khác nhau, đã truyền bệnh này. Triatomines là những loài côn trùng nửa cánh sống lâu đời đã phát triển để khai thác các môi trường khác nhau để liên kết với các vật chủ có xương sống. Hiểu biết về cơ sở phân tử của các điều kiện sinh lý cực đoan, bao gồm khả năng chịu đói và tuổi thọ có thể cung cấp cái nhìn cho việc phát triển các chiến lược kiểm soát mới. Chúng tôi mô tả cDNA đã được chuẩn hóa và phân tích toàn bộ transcriptome của ba loài côn trùng truyền bệnh chính ở Bắc, Trung và Nam Mỹ, Triatoma pallidipennis, T. dimidiata và T. infestans. Hai phần ba transcriptome được assembed de novo được ánh xạ tới bộ gen và proteome của Rhodnius prolixus. Một sự mở rộng gia đình calycin của Triatoma và hai loại chất ức chế protease, pacifastins và cystatins đã được xác định. Một số lượng lớn các yếu tố chuyển vị lớp I có hoạt động phiên mã ở T. infestans được ghi nhận so với các loài khác, T. dimidiata và T. pallidipennis. Danh tính chuỗi ở các orthologs Triatoma-R. prolixus 1:1 cho thấy sự khác biệt cao về trình tự trong bốn enzyme tham gia vào sự hình thành glucose, tổng hợp glycogen và con đường phosphate pentose, cho thấy tỷ lệ tiến hóa cao của các gen này. Ngoài ra, bằng chứng phân tử cho thấy sự chọn lọc tích cực đã được tìm thấy cho nhiều gen của các phức hợp phosphoryl oxi hóa I, III và V. Các chất ức chế protease và sự mở rộng các gen mã hóa calycin cung cấp cái nhìn về các quá trình tiến hóa nhanh chóng của việc điều chỉnh protease và hematophagy. Tỷ lệ tiến hóa cao hơn ở các enzyme kiểm soát dòng chảy chuyển hóa hướng tới đồng hóa và bằng chứng về sự chọn lọc tích cực trong các phức hợp phosphoryl oxi hóa có thể đại diện cho những thích nghi di truyền, có thể liên quan đến tình trạng chịu đói kéo dài, khả năng chịu đựng stress oxi hóa, tuổi thọ và sự giảm thiểu hematophagy và bay. Tổng thể, nghiên cứu này đã tạo ra giả thuyết mới liên quan đến các thích ứng sinh học với các điều kiện sinh lý cực đoan và đa dạng môi trường sinh thái mà duy trì sự truyền bệnh Chagas.

Từ khóa

#Bệnh Chagas #Trypanosoma cruzi #triatomine #transcriptome #gen #chọn lọc tích cực #metabolite #huyết học

Tài liệu tham khảo

Lent H WP: Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease, vol 163; 1979. Justi SA, Galvao C. The evolutionary origin of diversity in Chagas disease vectors. Trends Parasitol. 2017;33(1):42–52. Hwang WS, Weirauch C. Evolutionary history of assassin bugs (insecta: hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS One. 2012;7(9):e45523. Gaunt M, Miles M. The Ecotopes and evolution of Triatomine bugs (Triatominae) and their associated trypanosomes. Mem Inst Oswaldo Cruz. 2000;95(4):557. WHO. Control of Chagas disease. World Health Organization Tech Rep Ser. 2002;905:i–vi. 1–109, back cover Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis. 2008;2(4):e210. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375(9723):1388–402. Zeledon R, Guardia VM, Zuniga A, Swartzwelder JC. Biology and ethology of Triatoma dimidiata (Latreille, 1811). II. Life span of adults and fecundity and fertility of females. J Med Entomol. 1970;7(4):462–9. Zeledon R, Guardia VM, Zuniga A, Swartzwelder JC. Biology and ethology of Triatoma dimidiata (Latreille, 1811). I. Life cycle, amount of blood ingested, resistance of starvation, and size of adults. J Med Entomol. 1970;7(3):313–9. Monroy MC, Bustamante DM, Rodas AG, Enriquez ME, Rosales RG. Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in Peten, Guatemala. J Med Entomol. 2003;40(6):800–6. Ramsey JM, Peterson AT, Carmona-Castro O, Moo-Llanes DA, Nakazawa Y, Butrick M, Tun-Ku E, la Cruz-Felix K, Ibarra-Cerdena CN. Atlas of Mexican Triatominae (Reduviidae: Hemiptera) and vector transmission of Chagas disease. Mem Inst Oswaldo Cruz. 2015;110(3):339–52. Ramsey JM, Ordonez R, Cruz-Celis A, Alvear AL, Chavez V, Lopez R, Pintor JR, Gama F, Carrillo S. Distribution of domestic triatominae and stratification of Chagas disease transmission in Oaxaca, Mexico. Med Vet Entomol. 2000;14(1):19–30. Gurtler RE. Sustainability of vector control strategies in the gran Chaco region: current challenges and possible approaches. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):52–9. Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, Spieth J, Carvalho AB, Panzera F, Lawson D, et al. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A. 2015;112(48):14936–41. Ribeiro JMC, Assumpcao TCF, Pham VM, Francischetti IMB, Reisenman CE. An insight into the Sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). J Med Entomol. 2012;49(3):563–72. Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol. 2008;38(2):213–32. Assumpcao TC, Eaton DP, Pham VM, Francischetti IM, Aoki V, Hans-Filho G, Rivitti EA, Valenzuela JG, Diaz LA, Ribeiro JM. An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America. American J Trop Med Hygiene. 2012;86(6):1005–14. Ribeiro JM, Schwarz A, Francischetti IM. A deep insight into the Sialotranscriptome of the Chagas disease vector, Panstrongylus megistus (Hemiptera: Heteroptera). J Med Entomol. 2015;52(3):351–8. Traverso L, Lavore A, Sierra I, Palacio V, Martinez-Barnetche J, Latorre-Estivalis JM, Mougabure-Cueto G, Francini F, Lorenzo MG, Rodriguez MH, et al. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl Trop Dis. 2017;11(2):e0005313. Hernandez-Vargas MJ, Santibanez-Lopez CE, Corzo G. An insight into the Triabin protein family of American hematophagous Reduviids: functional, structural and phylogenetic analysis. Toxins. 2016;8(2):44. Marchant A, Mougel F, Almeida C, Jacquin-Joly E, Costa J, Harry M. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease. Genetica. 2015;143(2):225–39. Dotson EM, Beard CB. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol. 2001;10(3):205–15. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23(9):1061–7. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36(10):3420–35. Breugelmans B, Simonet G, van Hoef V, Van Soest S, Vanden Broeck J. Pacifastin-related peptides: structural and functional characteristics of a family of serine peptidase inhibitors. Peptides. 2009;30(3):622–32. Wallin H, Bjarnadottir M, Vogel LK, Wasselius J, Ekstrom U, Abrahamson M. Cystatins--extra- and intracellular cysteine protease inhibitors: high-level secretion and uptake of cystatin C in human neuroblastoma cells. Biochimie. 2010;92(11):1625–34. Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;13:5406–20. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arca B, Arensburger P, Artemov G, et al. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347(6217):1258522. Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, Valenzuela JG, Hashiguchi Y. A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol. 2010;10(2):184–91. Frickey T, Lupas A. CLANS: a java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20(18):3702–4. Montfort WR, Weichsel A, Andersen JF. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. Biochim Biophys Acta. 2000;1482(1–2):110–8. Ribeiro JM, Genta FA, Sorgine MH, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, et al. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis. 2014;8(1):e2594. Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6:11. Potter CJ. Stop the biting: targeting a mosquito's sense of smell. Cell. 2014;156(5):878–81. Rebers JE, Willis JH. A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol. 2001;31(11):1083–93. Suetake T, Tsuda S, Kawabata S, Miura K, Iwanaga S, Hikichi K, Nitta K, Kawano K. Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem. 2000;275(24):17929–32. Alvarenga ES, Mansur JF, Justi SA, Figueira-Mansur J, Dos Santos VM, Lopez SG, Masuda H, Lara FA, Melo AC, Moreira MF. Chitin is a component of the Rhodnius prolixus midgut. Insect Biochem Mol Biol. 2016;69:61–70. Soares JB, Gaviraghi A, Oliveira MF. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production. PLoS One. 2015;10(3):e0120600. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31. Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22(5):1208–22. Waterhouse RM. A maturing understanding of the composition of the insect gene repertoire. Current Opin Insect Sci. 2015;7:15–23. Feyereisen R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta. 2011;1814(1):19–28. Liang Z, Sottrup-Jensen L, Aspan A, Hall M, Soderhall K. Pacifastin, a novel 155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc Natl Acad Sci U S A. 1997;94(13):6682–7. Breugelmans B, Simonet G, van Hoef V, Van Soest S, Broeck JV. Identification, distribution and molecular evolution of the pacifastin gene family in Metazoa. BMC Evol Biol. 2009;9:97. Schwarz A, Medrano-Mercado N, Schaub GA, Struchiner CJ, Bargues MD, Levy MZ, Ribeiro JM. An updated insight into the Sialotranscriptome of Triatoma infestans: developmental stage and geographic variations. PLoS Negl Trop Dis. 2014;8(12):e3372. de Marco R, Lovato DV, Torquato RJ, Clara RO, Buarque DS, Tanaka AS. The first pacifastin elastase inhibitor characterized from a blood sucking animal. Peptides. 2010;31(7):1280–6. Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JM. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem. 2007;282(40):29256–63. Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, Ribeiro JM. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 2006;281(36):26298–307. Assumpcao TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araujo CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA, et al. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res. 2011;10(2):669–79. Buarque DS, Spindola LM, Martins RM, Braz GR, Tanaka AS. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi. Biochem Biophys Res Commun. 2011;413(2):241–7. Flower DR, North AC, Sansom CE. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta. 2000;1482(1–2):9–24. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JC. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS One. 2011;6(1):e15890. Panzera F, Ferrandis I, Ramsey J, Salazar-Schettino PM, Cabrera M, Monroy C, Bargues MD, Mas-Coma S, O'Connor JE, Angulo VM, et al. Genome size determination in chagas disease transmitting bugs (hemiptera-triatominae) by flow cytometry. Am J Tropical Med Hyg. 2007;76(3):516–21. Habibi L, Pedram M, AmirPhirozy A, Bonyadi K. Mobile DNA elements: the seeds of organic complexity on earth. DNA Cell Biol. 2015;34(10):597–609. Gilbert C, Schaack S, Pace JK 2nd, Brindley PJ, Feschotte C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature. 2010;464(7293):1347–50. Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O. Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species. Mol Biol Evol. 2012;29(12):3685–702. Novikova O, Sliwinska E, Fet V, Settele J, Blinov A, Woyciechowski M. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol. 2007;7:93. Biedler JK, Chen X, Tu Z. Horizontal transmission of an R4 clade non-long terminal repeat retrotransposon between the divergent Aedes and Anopheles mosquito genera. Insect Mol Biol. 2015;24(3):331–7. International Aphid Genomics C. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010;8(2):e1000313. Martinez-Barnetche J, Gomez-Barreto RE, Ovilla-Munoz M, Tellez-Sosa J, Garcia Lopez DE, Dinglasan RR, Ubaida Mohien C, MacCallum RM, Redmond SN, Gibbons JG, et al. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus. BMC Genomics. 2012;13:207. Eanes WF. Molecular population genetics and selection in the glycolytic pathway. J Exp Biol. 2011;214(Pt 2):165–71. Zera AJ. Microevolution of intermediary metabolism: evolutionary genetics meets metabolic biochemistry. J Exp Biol. 2011;214(Pt 2):179–90. Leite A, Neto JA, Leyton JF, Crivellaro O, el-Dorry HA. Phosphofructokinase from bumblebee flight muscle. Molecular and catalytic properties and role of the enzyme in regulation of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle. J Biol Chem. 1988;263(33):17527–33. Staples JF, Koen EL, Laverty TM. Futile cycle' enzymes in the flight muscles of north American bumblebees. J Exp Biol. 2004;207(Pt 5):749–54. Verrelli BC, Eanes WF. The functional impact of Pgm amino acid polymorphism on glycogen content in Drosophila melanogaster. Genetics. 2001;159(1):201–10. Verrelli BC, Eanes WF. Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics. 2001;157(4):1649–63. Wigglesworth VB. Cytological changes in the fat body of Rhodnius during starvation, feeding and oxygen want. J Cell Sci. 1967;2(2):243–56. Santos R, Mariano AC, Rosas-Oliveira R, Pascarelli B, Machado EA, Meyer-Fernandes JR, Gondim KC. Carbohydrate accumulation and utilization by oocytes of Rhodnius prolixus. Arch Insect Biochem Physiol. 2008;67(2):55–62. Mariano AC, Santos R, Gonzalez MS, Feder D, Machado EA, Pascarelli B, Gondim KC, Meyer-Fernandes JR. Synthesis and mobilization of glycogen and trehalose in adult male Rhodnius prolixus. Arch Insect Biochem Physiol. 2009;72(1):1–15. Mury FB, Lugon MD, RN DAF, Silva JR, Berni M, Araujo HM, Fontenele MR, Abreu LA, Dansa M, Braz G, et al. Glycogen synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus. Parasitology. 2016;143(12):1569–79. Legan SK, Rebrin I, Mockett RJ, Radyuk SN, Klichko VI, Sohal RS, Orr WC. Overexpression of glucose-6-phosphate dehydrogenase extends the life span of Drosophila melanogaster. J Biol Chem. 2008;283(47):32492–9. Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, Liang CJ, Sang TK, Ciou SC, Yuh CH, et al. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell. 2012;11(1):93–103. Bennett CF, Kwon JJ, Chen C, Russell J, Acosta K, Burnaevskiy N, Crane MM, Bitto A, Vander Wende H, Simko M, et al. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genet. 2017;13(3):e1006695. Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016;17(12):1721–30. Milenkovic D, Blaza JN, Larsson NG, Hirst J. The enigma of the respiratory chain Supercomplex. Cell Metab. 2017;25(4):765–76. Scialo F, Sriram A, Fernandez-Ayala D, Gubina N, Lohmus M, Nelson G, Logan A, Cooper HM, Navas P, Enriquez JA, et al. Mitochondrial ROS produced via reverse Electron transport extend animal lifespan. Cell Metab. 2016;23(4):725–34. Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, Walker DW. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Current Biol. 2009;19(19):1591–8. Yang Y, Xu S, Xu J, Guo Y, Yang G. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS One. 2014;9(6):e99120. Leis M, Pereira MH, Casas J, Menu F, Lazzari CR. Haematophagy is costly: respiratory patterns and metabolism during feeding in Rhodnius prolixus. J Exp Biol. 2016;219(Pt 12):1820–6. Nogueira NP, Saraiva FM, Sultano PE, Cunha PR, Laranja GA, Justo GA, Sabino KC, Coelho MG, Rossini A, Atella GC, et al. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One. 2015;10(2):e0116712. Zumaya-Estrada FA, Martinez-Barnetche J, Lavore A, Rivera-Pomar R, Rodriguez MH. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors. 2018;11(1):48. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4. Giraldo-Calderon GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, Ho N, Gesing S, VectorBase C, Madey G, et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 2015;43(Database issue):D707–13. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287(5461):2185–95. Gene Ontology C. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049–56. Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007;23(4):401–7. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222–30. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–8. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418–26. Muse SV, Gaut BS. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994;11(5):715–24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–76. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.