Acute-on-chronic liver failure alters meropenem pharmacokinetics in critically ill patients with continuous hemodialysis: an observational study

Annals of Intensive Care - Tập 10 Số 1 - 2020
Jörn Grensemann1, David Busse2, Christina König1, Kevin Roedl1, Walter Jäger3, Dominik Jarczak1, Stefanie Iwersen‐Bergmann4, Carolin Manthey5, Stefan Kluge1, Charlotte Kloft2, Valentin Fuhrmann6
1Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
2Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169, Berlin, Germany
3Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
4Department of Legal Medicine, University Medical Center Hamburg–Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
5First Department of Internal Medicine and Gastroenterology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
6Department of Medicine B, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149, Münster, Germany

Tóm tắt

Abstract Background Infection and sepsis are a main cause of acute-on-chronic liver failure (ACLF). Adequate dosing of antimicrobial therapy is of central importance to improve outcome. Liver failure may alter antibiotic drug concentrations via changes of drug distribution and elimination. We studied the pharmacokinetics of meropenem in critically ill patients with ACLF during continuous veno-venous hemodialysis (CVVHD) and compared it to critically ill patients without concomitant liver failure (NLF). Methods In this prospective cohort study, patients received meropenem 1 g tid short-term infusion (SI). Meropenem serum samples were analyzed by high-performance liquid chromatography. A population pharmacokinetic analysis was performed followed by Monte Carlo simulations of (A) meropenem 1 g tid SI, (B) 2 g loading plus 1 g prolonged infusion tid (C) 2 g tid SI, and (D) 2 g loading and continuous infusion of 3 g/day on days 1 and 7. Probability of target attainment (PTA) was assessed for 4× the epidemiological cut-off values for Enterobacterales (4 × 0.25 mg/L) and Pseudomonas spp. (4 × 2 mg/L). Results Nineteen patients were included in this study. Of these, 8 patients suffered from ACLF. A two-compartment model with linear clearance from the central compartment described meropenem pharmacokinetics. The peripheral volume of distribution (V2) was significantly higher in ACLF compared to NLF (38.6L versus 19.7L, p = .05). PTA for Enterobacterales was achieved in 100% for all dosing regimens. PTA for Pseudomonas spp. in ACLF on day 1/7 was: A: 18%/80%, B: 94%/88%, C: 85%/98% D: 100%/100% and NLF: A: 48%/65%, B: 91%/83%, C: 91%/93%, D: 100%/100%. Conclusion ALCF patients receiving CVVHD had a higher V2 and may require a higher loading dose of meropenem. For Pseudomonas, high doses or continuous infusion are required to reach PTA in ACLF patients.

Từ khóa


Tài liệu tham khảo

Fernandez J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, Reverter E, Martinez J, Saliba F, Jalan R, et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut. 2018;67(10):1870–80.

Hubener P, Braun G, Fuhrmann V. Acute-on-chronic liver failure: a diagnostic and therapeutic challenge for intensive care. Med Klin Intensivmed Notfmed. 2018;113(8):649–57.

Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):e1426–37.

European Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69(2):406–60.

Fuhrmann V, Whitehouse T, Wendon J. The ten tips to manage critically ill patients with acute-on-chronic liver failure. Intensive Care Med. 2018;44(11):1932–5.

Jalan R, Fernandez J, Wiest R, Schnabl B, Moreau R, Angeli P, Stadlbauer V, Gustot T, Bernardi M, Canton R, et al. Bacterial infections in cirrhosis: a position statement based on the EASL special conference 2013. J Hepatol. 2014;60(6):1310–24.

Fernandez J, Prado V, Trebicka J, Amoros A, Gustot T, Wiest R, Deulofeu C, Garcia E, Acevedo J, Fuhrmann V, et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol. 2019;70(3):398–411.

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.

Staufer K, Roedl K, Kivaranovic D, Drolz A, Horvatits T, Rasoul-Rockenschaub S, Zauner C, Trauner M, Fuhrmann V. Renal replacement therapy in critically ill liver cirrhotic patients-outcome and clinical implications. Liver Int. 2017;37(6):843–50.

Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009;29(5):562–77.

Thyrum PT, Yeh C, Birmingham B, Lasseter K. Pharmacokinetics of meropenem in patients with liver disease. Clin Infect Dis. 1997;24(Suppl 2):S184–90.

Drolz A, Horvatits T, Rutter K, Landahl F, Roedl K, Meersseman P, Wilmer A, Kluwe J, Lohse AW, Kluge S, et al. Lactate improves prediction of short-term mortality in critically Ill patients with cirrhosis: a multinational study. Hepatology. 2019;69(1):258–69.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996;22(7):707–10.

Savic RM, Karlsson MO. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

Holford N. The visual predictive check–superiority to standard diagnostic (Rorschach) plots. In: Populations approach group Europe conference abstract (PAGE 14) 2005.

Ette EI, Sun H, Ludden TM. Balanced designs in longitudinal population pharmacokinetic studies. J Clin Pharmacol. 1998;38(5):417–23.

Ehmann L, Zoller M, Minichmayr I, Scharf C, Frey L, Vogeser M, Huisinga W, Zander J, Kloft C. Pharmacokinetics of meropenem in critically ill patients with varying renal function. In: Populations Approach Group Europe Conference Abstract (PAGE 25) 2016.

Antimicrobial wild type distributions of microorganisms https://mic.eucast.org/Eucast2/.

Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2017;73(3):564–8.

Braune S, Konig C, Roberts JA, Nierhaus A, Steinmetz O, Baehr M, Kluge S, Langebrake C. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Crit Care. 2018;22(1):25.

Christensson BA, Nilsson-Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992;36(7):1532–7.

Thalhammer F, Horl WH. Pharmacokinetics of meropenem in patients with renal failure and patients receiving renal replacement therapy. Clin Pharmacokinet. 2000;39(4):271–9.

Jamal JA, Mat-Nor MB, Mohamad-Nor FS, Udy AA, Wallis SC, Lipman J, Roberts JA. Pharmacokinetics of meropenem in critically ill patients receiving continuous venovenous haemofiltration: a randomised controlled trial of continuous infusion versus intermittent bolus administration. Int J Antimicrob Agents. 2015;45(1):41–5.

Choudhury A, Kumar M, Sharma BC, Maiwall R, Pamecha V, Moreau R, Chawla YK, Duseja A, Mahtab M, Rahman S, et al. Systemic inflammatory response syndrome in acute-on-chronic liver failure: relevance of ‘golden window’: a prospective study. J Gastroenterol Hepatol. 2017;32(12):1989–97.

Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.

Yu Z, Pang X, Wu X, Shan C, Jiang S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: a meta-analysis. PLoS ONE. 2018;13(7):e0201667.

Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, Goutelle S, Lefeuvre S, Mongardon N, Roger C, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French society of pharmacology and therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and intensive care medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit Care. 2019;23(1):104.

el Touny M, el Guinaidy M, Abdel Barry M, Osman L, Sabbour MS. Pharmacokinetics of aztreonam in patients with liver cirrhosis and ascites. J Antimicrob Chemother. 1992;30(3):387–95.

el Touny M, el Guinaidy MA, el Abd Barry M, Osman L, Sabbour MS. Pharmacokinetics of ceftazidime in patients with liver cirrhosis and ascites. J Antimicrob Chemother. 1991;28(1):95–100.

Karjagin J, Lefeuvre S, Oselin K, Kipper K, Marchand S, Tikkerberi A, Starkopf J, Couet W, Sawchuk RJ. Pharmacokinetics of meropenem determined by microdialysis in the peritoneal fluid of patients with severe peritonitis associated with septic shock. Clin Pharmacol Ther. 2008;83(3):452–9.

Ulldemolins M, Vaquer S, Llaurado-Serra M, Pontes C, Calvo G, Soy D, Martin-Loeches I. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care. 2014;18(3):227.

Minichmayr IK, Roberts JA, Frey OR, Roehr AC, Kloft C, Brinkmann A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J Antimicrob Chemother. 2018;73(5):1330–9.

Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infections. Clin Pharmacokinet. 2015;54(9):933–41.

Ehmann L, Zoller M, Scharf C, Minichmayr IK, Vogeser M, Frey L, Zander J, Kloft C. Pharmacokinetic/pharmacodynamic analysis of meropenem in critically ill patients. In: ECCMID 2016.

Ehmann L, Zoller M, Minichmayr IK, Scharf C, Huisinga W, Zander J, Kloft C. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents. 2019;54(3):309–17.

Burger R, Guidi M, Calpini V, Lamoth F, Decosterd L, Robatel C, Buclin T, Csajka C, Marchetti O. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J Antimicrob Chemother. 2018;73(12):3413–22.

Craig WA. The pharmacology of meropenem, a new carbapenem antibiotic. Clin Infect Dis. 1997;24(Suppl 2):S266–75.

Ververs TF, van Dijk A, Vinks SA, Blankestijn PJ, Savelkoul JF, Meulenbelt J, Boereboom FT. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit Care Med. 2000;28(10):3412–6.

Kees MG, Minichmayr IK, Moritz S, Beck S, Wicha SG, Kees F, Kloft C, Steinke T. Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients. J Clin Pharmacol. 2016;56(3):307–15.

Taccone FS, Hites M, Beumier M, Scolletta S, Jacobs F. Appropriate antibiotic dosage levels in the treatment of severe sepsis and septic shock. Curr Infect Dis Rep. 2011;13(5):406–15.

Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50(3):425–8.

Manduru M, Mihm LB, White RL, Friedrich LV, Flume PA, Bosso JA. In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 1997;41(9):2053–6.

Mouton JW, den Hollander JG. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother. 1994;38(5):931–6.

Lodise TP, Sorgel F, Melnick D, Mason B, Kinzig M, Drusano GL. Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2011;55(4):1606–10.

Byl B, Jacobs F, Roucloux I, de Franquen P, Cappello M, Thys JP. Penetration of meropenem in lung, bronchial mucosa, and pleural tissues. Antimicrob Agents Chemother. 1999;43(3):681–2.

Mader MM, Czorlich P, Konig C, Fuhrmann V, Kluge S, Westphal M, Grensemann J. Intrathecal penetration of meropenem and vancomycin administered by continuous infusion in patients suffering from ventriculitis-a retrospective analysis. Acta Neurochir. 2018;160(11):2099–105.

Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–7.

Fantin B, Farinotti R, Thabaut A, Carbon C. Conditions for the emergence of resistance to cefpirome and ceftazidime in experimental endocarditis due to Pseudomonas aeruginosa. J Antimicrob Chemother. 1994;33(3):563–9.

Day T, Read AF. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput Biol. 2016;12(1):e1004689.

Gugel J, Dos Santos Pereira A, Pignatari AC, Gales AC. Beta-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):2276–7.

Rhodes NJ, Kuti JL, Nicolau DP, Van Wart S, Nicasio AM, Liu J, Lee BJ, Neely MN, Scheetz MH. Defining clinical exposures of cefepime for gram-negative bloodstream infections that are associated with improved survival. Antimicrob Agents Chemother. 2015;60(3):1401–10.

Ehmann L, Zoller M, Minichmayr IK, Scharf C, Maier B, Schmitt MV, Hartung N, Huisinga W, Vogeser M, Frey L, et al. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study. Crit Care. 2017;21(1):263.

Heil EL, Nicolau DP, Farkas A, Roberts JA, Thom KA. Pharmacodynamic target attainment for cefepime, meropenem, and piperacillin-tazobactam using a Pharmacokinetic/Pharmacodynamic-based dosing calculator in critically Ill patients. Antimicrob Agents Chemother. 2018;62(9):e01008–18.