Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on incretin hormones
Tóm tắt
Coffee consumption is associated with a lower risk of type 2 diabetes. We tested the hypothesis that this is mediated by incretin hormones by measuring the acute effects of decaffeinated coffee and coffee components on GLP-1 and GIP concentrations. A randomized cross-over trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo on total and intact GLP-1 and GIP concentrations during an oral glucose tolerance test took place in fifteen overweight men. No treatment significantly affected the overall GLP-1 or GIP secretion pattern following an OGTT relative to placebo. Decaffeinated coffee slightly increased total GLP-1 concentration 30 minutes after ingestion (before the OGTT) relative to placebo (2.7 pmol/L, p = 0.03), but this change did not correspond with changes in glucose or insulin secretion. These findings do not support the hypothesis that coffee acutely improves glucose tolerance through effects on the secretion of incretin hormones. Chronic effects of coffee and its major components still need to be investigated.
Tài liệu tham khảo
van Dam RM, Hu FB: Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005, 294: 97-104. 10.1001/jama.294.1.97.
van Dam RM, Willett WC, Manson JE, Hu FB: Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care. 2006, 29: 398-403. 10.2337/diacare.29.02.06.dc05-1512.
Clifford MN: chlorogenic acids and other cinnamates - nature, occurence and dietary burden. J Sci Food Agric. 1999, 79: 10-10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
Minamisawa M, Yoshida S, Takai N: Determination of biologically active substances in roasted coffees using a diode-array HPLC system. Anal Sci. 2004, 20 (2): 325-8. 10.2116/analsci.20.325.
Mishkinsky J, Joseph B, Sulman FG: Hypoglycaemic effect of trigonelline. Lancet. 1967, 2: 1311-2. 10.1016/S0140-6736(67)90428-X.
Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM: Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct. 2008, 26: 320-8. 10.1002/cbf.1444.
Rodriguez de Sotillo DV, Hadley M: Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem. 2002, 13: 717-26. 10.1016/S0955-2863(02)00231-0.
McCarty MF: A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses. 2005, 64: 848-53. 10.1016/j.mehy.2004.03.037.
Johnston KL, Clifford MN, Morgan LM: Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003, 78: 728-33.
Greenberg JA, Owen DR, Geliebter A: Decaffeinated coffee and glucose metabolism in young men. Diabetes Care. 2010, 33: 278-80. 10.2337/dc09-1539.
van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM: Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009, 32: 1023-5. 10.2337/dc09-0207.
Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, Schmidt WE, Meier JJ: Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008, 57: 678-87. 10.2337/db07-1124.
Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ: Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003, 88: 2706-13. 10.1210/jc.2002-021873.