Activation of extracellular signal-regulated protein kinase 5 is essential for cystitis- and nerve growth factor-induced calcitonin gene-related peptide expression in sensory neurons
Tóm tắt
Cystitis causes considerable neuronal plasticity in the primary afferent pathways. The molecular mechanism and signal transduction underlying cross talk between the inflamed urinary bladder and sensory sensitization has not been investigated. In a rat cystitis model induced by cyclophosphamide (CYP) for 48 h, the mRNA and protein levels of the excitatory neurotransmitter calcitonin gene-related peptide (CGRP) are increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. Cystitis-induced CGRP expression in L6 DRG is triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reverses CGRP up-regulation during cystitis. CGRP expression in the L6 DRG neurons is also enhanced by retrograde NGF signaling when NGF is applied to the nerve terminals of the ganglion-nerve two-compartmented preparation. Characterization of the signaling pathways in cystitis- or NGF-induced CGRP expression reveals that the activation (phosphorylation) of extracellular signal-regulated protein kinase (ERK)5 but not Akt is involved. In L6 DRG during cystitis, CGRP is co-localized with phospho-ERK5 but not phospho-Akt. NGF-evoked CGRP up-regulation is also blocked by inhibition of the MEK/ERK pathway with specific MEK inhibitors U0126 and PD98059, but not by inhibition of the PI3K/Akt pathway with inhibitor LY294002. Further examination shows that cystitis-induced cAMP-responsive element binding protein (CREB) activity is expressed in CGRP bladder afferent neurons and is co-localized with phospho-ERK5 but not phospho-Akt. Blockade of NGF action in vivo reduces the number of DRG neurons co-expressing CGRP and phospho-CREB, and reverses cystitis-induced increases in micturition frequency. A specific pathway involving NGF-ERK5-CREB axis plays an essential role in cystitis-induced sensory activation.
Tài liệu tham khảo
Benemei S, Nicoletti P, Capone JG, Geppetti P: CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol 2009, 9: 9–14. 10.1016/j.coph.2008.12.007
Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V: Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010, 8: 6–10.
Nahin RL, Byers MR: Adjuvant-induced inflammation of rat paw is associated with altered calcitonin gene-related peptide immunoreactivity within cell bodies and peripheral endings of primary afferent neurons. J Comp Neurol 1994, 349: 475–485. 10.1002/cne.903490311
Springer J, Geppetti P, Fischer A, Groneberg DA: Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther 2003, 16: 121–130. 10.1016/S1094-5539(03)00049-X
Smith GD, Harmar AJ, McQueen DS, Seckl JR: Increase in substance P and CGRP, but not somatostatin content of innervating dorsal root ganglia in adjuvant monoarthritis in the rat. Neurosci Lett 1992, 137: 257–260. 10.1016/0304-3940(92)90417-6
Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN: Arthritic calcitonin/alpha calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 2001, 89: 265–273. 10.1016/S0304-3959(00)00378-X
Bennett AD, Chastain KM, Hulsebosch CE: Alleviation of mechanical and thermal allodynia by CGRP8–37 in a rodent model of chronic central pain. Pain 2000, 86: 163–175. 10.1016/S0304-3959(00)00242-6
Kawamura M, Kuraishi Y, Minami M, Satoh M: Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats. Brain Res 1989, 497: 199–203. 10.1016/0006-8993(89)90990-6
Lofgren O, Yu LC, Theodorsson E, Hansson P, Lundeberg T: Intrathecal CGRP8–37 results in a bilateral increase in hindpaw withdrawal latency in rats with a unilateral thermal injury. Neuropeptides 1997, 31: 601–607. 10.1016/S0143-4179(97)90006-8
Yu LC, Hansson P, Brodda-Jansen G, Theodorsson E, Lundeberg T: Intrathecal CGRP8–37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation. Br J Pharmacol 1996, 117: 43–50. 10.1111/j.1476-5381.1996.tb15152.x
Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V: Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP. Mol Pain 2006, 26: 31.
Oku R, Satoh M, Fujii N, Otaka A, Yajima H, Takagi H: Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res 1987, 403: 350–354. 10.1016/0006-8993(87)90074-6
Sun RQ, Lawand NB, Willis WD: The role of calcitonin generelated peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin. Pain 2003, 104: 201–208. 10.1016/S0304-3959(03)00008-3
Lu Y, Westlund KN: Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res 2001, 889: 118–130. 10.1016/S0006-8993(00)03124-3
Qiao LY, Grider JR: Up-regulation of calcitonin gene-related peptide and receptor tyrosine kinase TrkB in rat bladder afferent neurons following TNBS colitis. Exp Neurol 2007, 204: 667–679. 10.1016/j.expneurol.2006.12.024
Qiao LY, Grider JR: Colitis induces calcitonin gene-related peptide expression and Akt activation in rat primary afferent pathways. Exp Neurol 2009, 219: 93–103. 10.1016/j.expneurol.2009.04.026
Donaldson LF, Harmar AJ, McQueen DS, Seckl JR: Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. Brain Res Mol Brain Res 1992, 16: 143–149.
Mulder H, Zhang Y, Danielsen N, Sundler F: Islet amyloid polypeptide and calcitonin gene-related peptide expression are upregulated in lumbar dorsal root ganglia after unilateral adjuvant-induced inflammation in the rat paw. Brain Res Mol Brain Res 1997, 50: 127–135.
Calzà L, Pozza M, Arletti R, Manzini E, Hökfelt T: Long-lasting regulation of galanin, opioid, and other peptides in dorsal root ganglia and spinal cord during experimental polyarthritis. Exp Neurol 2000, 164: 333–343. 10.1006/exnr.2000.7442
Bulling DG, Kelly D, Bond S, McQueen DS, Seckl JR: Adjuvant-induced joint inflammation causes very rapid transcription of beta-preprotachykinin and alpha-CGRP genes in innervating sensory ganglia. J Neurochem 2001, 77: 372–382. 10.1046/j.1471-4159.2001.00175.x
Vizzard MA: Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 2001, 21: 125–138. 10.1016/S0891-0618(00)00115-0
Chung K, Lee WT, Carlton SM: The effects of dorsal rhizotomy and spinal cord isolation on calcitonin gene-related peptide-labeled terminals in the rat lumbar dorsal horn. Neurosci Lett 1988, 90: 27–32. 10.1016/0304-3940(88)90781-1
Seybold VS, Galeazza MT, Garry MG, Hargreaves KM: Plasticity of calcitonin gene related peptide neurotransmission in the spinal cord during peripheral inflammation. Can J Physiol Pharmacol 1995, 73: 1007–1014. 10.1139/y95-141
Ju G, Hökfelt T, Brodin E, Fahrenkrug J, Fischer AJ, Frey P, Elde RP, Brown JC: Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res 1987, 247: 417–431.
McCarthy PW, Lawson SW: Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptide-like immunoreactivity. Neuroscience 1990, 34: 623–632. 10.1016/0306-4522(90)90169-5
Averill S, McMahon SB, Clary DO, Reichardt LF, Priestley JV: Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur J Neurosci 1995, 7: 1484–1494. 10.1111/j.1460-9568.1995.tb01143.x
Lindsay RM, Harmar AJ: Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 1989, 337: 362–364. 10.1038/337362a0
Park KA, Fehrenbacher JC, Thompson EL, Duarte DB, Hingtgen CM, Vasko MR: Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience 2010, 171: 910–923. 10.1016/j.neuroscience.2010.09.027
Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hökfelt T: Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 1995, 15: 2081–2096.
Shadiack AM, Sun Y, Zigmond RE: Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosci 2001, 21: 363–371.
Donnerer J, Schuligoi R, Stein C: Increased content and transport of substance P and calcitonin gene-related peptide in sensory nerves innervating inflamed tissue: evidence for a regulatory function of nerve growth factor in vivo. Neuroscience 1992, 49: 693–698. 10.1016/0306-4522(92)90237-V
Schicho R, Donnerer J: Nerve growth factor stimulates synthesis of calcitonin gene-related peptide in dorsal root ganglion cells during sensory regeneration in capsaicin-treated rats. Neurosci Res 1999, 35: 183–187. 10.1016/S0168-0102(99)00083-8
Segal RA: Selectivity in neurotropin signaling: Theme and Variations. Annual Review Neuroscience 2003, 26: 299–330. 10.1146/annurev.neuro.26.041002.131421
Watson FL, Heerssen HM, Bhattacharyya A, Klesse L, Lin MZ, Segal RA: Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 2001, 4: 981–988. 10.1038/nn720
Perkinton MS, Ip JK, Wood GL, Crossthwaite AJ, Williams RJ: Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 2002, 80: 239–254. 10.1046/j.0022-3042.2001.00699.x
Blum R, Konnerth A: Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology 2005, 20: 70–78. 10.1152/physiol.00042.2004
Lanigan TM, Russo AF: Binding of upstream stimulatory factor and a cell-specific activator to the calcitonin/calcitonin gene-related peptide enhancer. J Biol Chem 1997, 272: 18316–18324. 10.1074/jbc.272.29.18316
Freeland K, Liu YZ, Latchman DS: Distinct signalling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor. Biochem J 2000, 345: 233–238. 10.1042/0264-6021:3450233
de Bustros A, Lee RY, Compton D, Tsong TY, Baylin SB, Nelkin BD: Differential utilization of calcitonin gene regulatory DNA sequences in cultured lines of medullary thyroid carcinoma and small-cell lung carcinoma. Mol Cell Biol 1990, 10: 1773–1778.
Sofroniew MV, Howe CL, Mobley WC: Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001, 24: 1217–1281. 10.1146/annurev.neuro.24.1.1217
Barker PA, Hussain NK, McPherson PS: Retrograde signaling by the neurotrophins follows a well-worn Trk. Trends Neurosci 2002, 25: 379–381. 10.1016/S0166-2236(02)02199-9
Heerssen HM, Segal RA: Location, location, location: a spatial view of neurotrophin signal transduction. Trends Neurosci 2002, 25: 160–165. 10.1016/S0166-2236(02)02144-6
Howe CL, Mobley WC: Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol 2005, 15: 40–48. 10.1016/j.conb.2005.01.010
Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J: Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 1994, 62: 327–331. 10.1016/0306-4522(94)90366-2
Zhang QL, Qiao LY: Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder. Regul Pept 2012, 177: 73–78. 10.1016/j.regpep.2012.05.088
Vizzard MA: Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 2000, 161: 273–284. 10.1006/exnr.1999.7254
Qiao LY, Grider JR: Colitis elicits differential changes in the expression levels of receptor tyrosine kinase TrkA and TrkB in colonic afferent neurons: a possible involvement of axonal transport. Pain 2010, 151: 117–127. 10.1016/j.pain.2010.06.029
Qiao LY, Gulick MA: Region-specific changes in the phosphorylation of ERK1/2 and ERK5 in rat micturition pathways following cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007, 292: 1368–1375.
Qiao LY, Vizzard MA: Up-regulation of phosphorylated CREB but not c-Jun in bladder afferent neurons in dorsal root ganglia after cystitis. J Comp Neurol 2004, 469: 262–274. 10.1002/cne.11009
Cruz CD, Avelino A, McMahon SB, Cruz F: Increased spinal cord phosphorylation of extracellular signal-regulated kinases mediates micturition overactivity in rats with chronic bladder inflammation. Eur J Neurosci 2005, 21: 773–781. 10.1111/j.1460-9568.2005.03893.x
Kamakura S, Moriguchi T, Nishida E: Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 1999, 274: 26563–26571. 10.1074/jbc.274.37.26563
Chung CW, Zhang QL, Qiao LY: Endogenous nerve growth factor regulates collagen expression and bladder hypertrophy through Akt and MAPK pathways during cystitis. J Biol Chem 2010, 285: 4206–4212. 10.1074/jbc.M109.040444
Sugino Y, Kanematsu A, Hayashi Y, Haga H, Yoshimura N, Yoshimura K, Ogawa O: Voided stain on paper method for analysis of mouse urination. Neurourol Urodyn 2008, 27: 548–552. 10.1002/nau.20552
Lonze BE, Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002, 35: 605–623. 10.1016/S0896-6273(02)00828-0
Watson A, Latchman D: The cyclic AMP response element in the calcitonin/calcitonin gene-related peptide gene promoter is necessary but not sufficient for its activation by nerve growth factor. J Biol Chem 1995, 270: 9655–9660. 10.1074/jbc.270.16.9655
Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ: p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36: 57–68. 10.1016/S0896-6273(02)00908-X
Lamb K, Gebhart GF, Bielefeldt K: Increased nerve growth factor expression triggers bladder overactivity. J Pain 2004, 5: 150–156.
Okragly AJ, Niles AL, Saban R, Schmidt D, Hoffman RL, Warner TF, Moon TD, Uehling DT, Haak-Frendscho M: Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J Urol 1999, 161: 438–442. 10.1016/S0022-5347(01)61915-3
Lowe EM, Anand P, Terenghi G, William-Chestnut RE, Sinicropi DV: Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 1997, 79: 572–577. 10.1046/j.1464-410X.1997.00097.x
Bonnington JK, McNaughton PA: Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol 2003, 551: 433–446. 10.1113/jphysiol.2003.039990
Zhu W, Oxford GS: Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci 2007, 34: 689–700. 10.1016/j.mcn.2007.01.005
Zhuang ZY, Xu H, Clapham DE, Ji RR: Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004, 24: 8300–8309. 10.1523/JNEUROSCI.2893-04.2004
Guo A, Vulchanova L, Wang J, Li X, Elde R: Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 1999, 11: 946–958. 10.1046/j.1460-9568.1999.00503.x
Nazif O, Teichman JM, Gebhart GF: Neural upregulation in interstitial cystitis. Urology 2007, 69: 24–33. 10.1016/j.urology.2006.08.1108
Hu VY, Zvara P, Dattilio A, Redman TL, Allen SJ, Dawbarn D, Stroemer RP, Vizzard MA: Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. J Urol 2005, 173: 1016–1021. 10.1097/01.ju.0000155170.15023.e5
Patel TD, Jackman A, Rice FL, Kucera J, Snider WD: Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 2000, 25: 345–357. 10.1016/S0896-6273(00)80899-5
Johannessen M, Delghandi MP, Moens U: What turns CREB on? Cell Signal 2004, 16: 1211–1227. 10.1016/j.cellsig.2004.05.001
Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M: Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 2005, 102: 4459–4464. 10.1073/pnas.0501076102
Durham P, Russo A: Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurons. J Neurosci 2003, 23: 807–815.
Ai X, Cappuzzello J, Hall AK: Activin and bone morphogenetic proteins induce calcitonin gene-related peptide in embryonic sensory neurons in vitro. Mol Cell Neurosci 1999, 14: 506–518. 10.1006/mcne.1999.0798
Xu P, Van Slambrouck C, Berti-Mattera L, Hall AK: Activin induces tactile allodynia and increases calcitonin gene-related peptide after peripheral inflammation. J Neurosci 2005, 25: 9227–9235. 10.1523/JNEUROSCI.3051-05.2005
Xu P, Hall AK: Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience 2007, 150: 665–674. 10.1016/j.neuroscience.2007.09.041