Action selection and refinement in subcortical loops through basal ganglia and cerebellum

Philosophical Transactions of the Royal Society B: Biological Sciences - Tập 362 Số 1485 - Trang 1573-1583 - 2007
James C. Houk1, Christina Bastianen1, D Fansler1, Ayelet Fishbach1, David A. Fraser1, Paul J. Reber1, Stephane A. Roy1, Lucia S. Simó1
1Northwestern University Medical SchoolChicago, IL 60208, USA

Tóm tắt

Subcortical loops through the basal ganglia and the cerebellum form computationally powerful distributed processing modules (DPMs). This paper relates the computational features of a DPM's loop through the basal ganglia to experimental results for two kinds of natural action selection. First, functional imaging during a serial order recall task was used to study human brain activity during the selection of sequential actions from working memory. Second, microelectrode recordings from monkeys trained in a step-tracking task were used to study the natural selection of corrective submovements. Our DPM-based model assisted in the interpretation of puzzling data from both of these experiments. We come to posit that the many loops through the basal ganglia each regulate the embodiment of pattern formation in a given area of cerebral cortex. This operation serves to instantiate different kinds of action (or thought) mediated by different areas of cerebral cortex. We then use our findings to formulate a model of the aetiology of schizophrenia.

Từ khóa


Tài liệu tham khảo

10.1001/archpsyc.56.9.781

10.1016/S0893-6080(00)00070-8

10.1152/jn.1998.79.6.3168

10.1053/comp.2003.50003

10.1162/jocn.1993.5.1.56

10.1038/361031a0

10.1037/0033-295X.113.2.201

10.1111/j.0953-816X.2003.03181.x

10.1113/jphysiol.1991.sp018726

10.1016/j.neuron.2005.01.027

10.1016/S0893-6080(99)00046-5

10.1016/j.bcp.2004.06.037

10.1126/science.278.5345.1901

10.1007/s00221-005-2264-3

10.1007/s00221-006-0652-y

10.1162/0898929052880093

10.1098/rstb.2007.2058

10.1016/j.schres.2003.09.019

10.1002/ajmg.10100

Georgopoulos A.P, 1995, The cognitive neurosciences, 507

10.1113/jphysiol.1985.sp015566

10.1152/jn.00618.2002

10.1007/PL00007984

10.1038/35094500

10.1152/jn.00603.2004

Houk J, 2001, Frontal–subcortical circuits in psychiatry and neurology, 92

10.1007/s00422-005-0569-8

Houk J, 2003, Fundamental neuroscience, 841

10.1093/cercor/5.2.95

Houk J.C, 1995, Models of information processing in the basal ganglia, 249

10.1101/lm.4.1.63

10.1098/rspb.2005.3354

10.1038/204220a0

10.1523/JNEUROSCI.23-23-08432.2003

Kelly R.M, 2004, Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits, Prog. Brain Res, 143, 449

10.1523/JNEUROSCI.18-12-04722.1998

10.2466/pr0.1967.20.2.407

10.1016/j.neuroscience.2005.07.013

10.1098/rstb.2002.1114

10.1152/jn.1998.79.5.2245

10.1016/S0920-9964(02)00294-3

10.1016/S0378-1119(01)00678-3

10.1037/h0062491

10.1146/annurev.neuro.23.1.185

10.1002/syn.890140306

10.1007/s002210000366

10.1007/s00221-002-1060-6

10.1162/089976606775093909

10.1038/nature03287

10.1016/S0166-2236(03)00196-6

10.1126/science.272.5265.1126

10.1016/S0306-4522(98)00319-4

10.1126/science.278.5345.1950

Roy S. A. Bastianen C. Nenonene E. Fishbach A. Miller L. E. & Houk J. C. 2003 Neural correlates of corrective submovement formation in the basal ganglia and motor cortex. Soc. for the Neural Control of Movement Abstracts .

10.1073/pnas.2036283100

Sutton R.S& Barto A.G. 1998 Reinforcement learning. An introduction. Cambridge MA:MIT Press.

10.1016/S0006-8993(00)02905-X

10.1016/j.tins.2004.08.007

10.1093/cercor/12.10.1040