Action recognition from only somatosensory information using spectral learning in a hidden Markov model

Robotics and Autonomous Systems - Tập 78 - Trang 29-35 - 2016
Wataru Takano1, Junya Obara1, Yoshihiko Nakamura1
1Mechano-Informatics, University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-8656, Japan

Tài liệu tham khảo

Lloyd, 2003, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech., 36, 765, 10.1016/S0021-9290(03)00010-1 K. Yamane, Y. Fujita, Y. Nakamura, Estimation of physically and physiologically valid somatosensory information, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2005, pp. 2624–2630. Murai, 2010, Computational modeling and algorithm for whole-body muscle activity visualization in real time, Prog. Biophys. Mol. Biol., 103, 310, 10.1016/j.pbiomolbio.2010.09.006 A. Murai, K. Yamane, Y. Nakamura, Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle, in: Proceedings of the 30th IEEE EMBS Annual International Conference, 2008, pp. 3706–3709. M. Sreenivasa, A. Murai, Y. Nakamura, Modeling and identification of the human arm stretch reflex using a realistic spiking neural network and musculoskeletal model, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 329–334. Breazeal, 2002, Robots that imitate humans, Trends Cogn. Sci., 6, 481, 10.1016/S1364-6613(02)02016-8 Calinon, 2008 Ijspeert, 2003, Learning control policies for movement imitation and movement recognition, Neural Inf. Process. Syst., 15, 1547 Haruno, 2001, MOSAIC model for sensorimotor learning and control, Neural Comput., 13, 2201, 10.1162/089976601750541778 Tani, 2003, Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment, IEEE Trans. Syst. Man Cybern. A, 33, 481, 10.1109/TSMCA.2003.809171 Billard, 2006, Discriminative and adaptive imitation in uni-manual and bi-manual tasks, Robot. Auton. Syst., 54, 370, 10.1016/j.robot.2006.01.007 D. Herzog, V. Krueger, D. Grest, Parametric hidden Markov models for recognition and synthesis of movements, in: Proceedings of the British Machine Vision Conference, 2008, pp. 163–172. Noda, 2014, Multimodal integration learning of robot behavior using deep neural networks, Robot. Auton. Syst., 62, 721, 10.1016/j.robot.2014.03.003 Sugita, 2005, Learning semantic combinatoriality from the interaction between linguistic and behavioral processes, Adapt. Behav., 33, 10.1177/105971230501300102 Takano, 2015, Construction of a space of motion labels from their mapping to full-body motion symbols, Adv. Robot., 29, 115, 10.1080/01691864.2014.985611 Takano, 2015, Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions, Int. J. Robot. Res., 34, 1314, 10.1177/0278364915587923 Rabiner, 1993 Juang, 1990, The segmental k-means algorithm for estimating parameters of hidden Markov models, IEEE Trans. Acoust. Speech Signal Process., 38, 1639, 10.1109/29.60082 Hsu, 2012, A spectral algorithm for learning hidden Markov models, J. Comput. System Sci., 78, 1460, 10.1016/j.jcss.2011.12.025 S.M. Siddiqi, B. Boots, G.J. Gordon, Reduced-rank hidden Markov models, in: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010. Jaeger, 2000, Observable operator models for discrete stochastic time series, Neural Comput., 12, 1371, 10.1162/089976600300015411