Action recognition from only somatosensory information using spectral learning in a hidden Markov model
Tài liệu tham khảo
Lloyd, 2003, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech., 36, 765, 10.1016/S0021-9290(03)00010-1
K. Yamane, Y. Fujita, Y. Nakamura, Estimation of physically and physiologically valid somatosensory information, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2005, pp. 2624–2630.
Murai, 2010, Computational modeling and algorithm for whole-body muscle activity visualization in real time, Prog. Biophys. Mol. Biol., 103, 310, 10.1016/j.pbiomolbio.2010.09.006
A. Murai, K. Yamane, Y. Nakamura, Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle, in: Proceedings of the 30th IEEE EMBS Annual International Conference, 2008, pp. 3706–3709.
M. Sreenivasa, A. Murai, Y. Nakamura, Modeling and identification of the human arm stretch reflex using a realistic spiking neural network and musculoskeletal model, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 329–334.
Breazeal, 2002, Robots that imitate humans, Trends Cogn. Sci., 6, 481, 10.1016/S1364-6613(02)02016-8
Calinon, 2008
Ijspeert, 2003, Learning control policies for movement imitation and movement recognition, Neural Inf. Process. Syst., 15, 1547
Haruno, 2001, MOSAIC model for sensorimotor learning and control, Neural Comput., 13, 2201, 10.1162/089976601750541778
Tani, 2003, Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment, IEEE Trans. Syst. Man Cybern. A, 33, 481, 10.1109/TSMCA.2003.809171
Billard, 2006, Discriminative and adaptive imitation in uni-manual and bi-manual tasks, Robot. Auton. Syst., 54, 370, 10.1016/j.robot.2006.01.007
D. Herzog, V. Krueger, D. Grest, Parametric hidden Markov models for recognition and synthesis of movements, in: Proceedings of the British Machine Vision Conference, 2008, pp. 163–172.
Noda, 2014, Multimodal integration learning of robot behavior using deep neural networks, Robot. Auton. Syst., 62, 721, 10.1016/j.robot.2014.03.003
Sugita, 2005, Learning semantic combinatoriality from the interaction between linguistic and behavioral processes, Adapt. Behav., 33, 10.1177/105971230501300102
Takano, 2015, Construction of a space of motion labels from their mapping to full-body motion symbols, Adv. Robot., 29, 115, 10.1080/01691864.2014.985611
Takano, 2015, Statistical mutual conversion between whole body motion primitives and linguistic sentences for human motions, Int. J. Robot. Res., 34, 1314, 10.1177/0278364915587923
Rabiner, 1993
Juang, 1990, The segmental k-means algorithm for estimating parameters of hidden Markov models, IEEE Trans. Acoust. Speech Signal Process., 38, 1639, 10.1109/29.60082
Hsu, 2012, A spectral algorithm for learning hidden Markov models, J. Comput. System Sci., 78, 1460, 10.1016/j.jcss.2011.12.025
S.M. Siddiqi, B. Boots, G.J. Gordon, Reduced-rank hidden Markov models, in: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010.
Jaeger, 2000, Observable operator models for discrete stochastic time series, Neural Comput., 12, 1371, 10.1162/089976600300015411