Acid treatment of melanoma cells selects for invasive phenotypes

Springer Science and Business Media LLC - Tập 25 Số 4 - Trang 411-425 - 2008
Raymond E. Moellering1,2, Kathleen Black1, Chetan Krishnamurty1, Brenda Baggett1, Phillip Stafford3, Matthew Rain4, Robert A. Gatenby5, Robert J. Gillies1,5
1Arizona Cancer Center, Arizona Health Sciences Center, Tucson, USA
2Department of chemistry and chemical biology, Harvard University, Cambridge, USA.
3Translational Genomics Research Institute (TGen), Phoenix, USA
4Agilent Technologies, Santa Clara, USA
5Department of Radiology, Arizona Cancer Center, Tucson, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823–823

Yun Z, Giaccia AJ (2003) Tumor deprivation of oxygen and tumor suppressor gene function. Method Mol Biol 223:485–504

Koumenis C, Alarcon R, Hammond E et al (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol & Cell Biol 21:1297–1310

Yasuda S (1995) Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 and its significance. Proc Natl Acad Sci USA 92:5965–5968

Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Ann Rev Med 53:89–112

Schornack PA, Gillies RJ (2003) Contributions of cell metabolism and H + diffusion to the acidic pH of tumors. Neoplasia (New York) 5:135–145

Gillies RJ, Raghunand N, Karczmar G et al (2002) MR Imaging of the tumor microenvironment. J Magn Reson Imaging 16:430–450

Park H, Lyons JC, Ohtsubo T et al (1999) Acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204

Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis. Oncogene 18:3199–3204

Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

Park HJ, Lyons JC, Ohtsubo T et al (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80:1892–1897

Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56:5745–5753

Rozhin J, Sameni M, Ziegler G et al (1994) Pericellular pH affects distribution and secretion of cathepsin B in Malignant Cells. Cancer Res 54:6517–6525

Sounni NE, Noel A (2005) Membrane-Type Matrix Metalloproteinases and Tumor Progression. Biochimie 87:329–342

Martinez-Zaguilan R, Seftor EA, Seftor RE et al (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

Rochefort H, Chalbos D, Cunat S et al (2001) Estrogen regulated proteases and antiproteases in ovarian and breast cancer cells. J Steroid Biochem Mol Biol 76:119–124

Ferrier CM, van Muijen GNP, Song CW (1998) Proteases in cutaneous melanoma. Ann Med 30:431–442

Goretzki L (1992) Effective activation of the proenzyme for of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297:112–118

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. [Review] [94 refs]. Cell 100:57–70

Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64:663–670

Webb SD, Sherratt JA, Fish RG (1999) Alterations in proteolytic acitivity at low pH and its association with invasion: a theoretical model. Clin Exp Metastasis 17:397–407

Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

Krishnamurty C, Rodriguez J, Raghunand N et al (2005) Automatic Lesion tracking in echo-planar diffusion weighted liver MRI: an active countour based approach. Proc Int Soc Magn Reson Med 13:1889

Wolber PK, Whannon KW, Fulmer-Smentek SB et al (2002) Robust local normalization of gene expression microarray data. Agilent Technical Note 1015:1–4

Khatri P, Draghici S, Ostermeier GC et al (2002) Profiling Gene Expression Utilizing Onto-express. Genomics 79:266–270

Diez H, Fischer A, Winkler A et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313:1–9

Barbera MJ, Puig I, Dominguez D et al (2004) Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23:7345–7354

Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163:1437–1447

Miyoshi A, Kitajima Y, Sumi K et al (2004) Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90:1265–1273

Helmlinger G, Yuan F, Dellian M et al (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899