Acid–base changes after fluid bolus: sodium chloride vs. sodium octanoate

Intensive Care Medicine Experimental - Tập 1 - Trang 1-11 - 2013
Lu Ke1,2,3, Paolo Calzavacca1,4,5,6, Michael Bailey7, Wei-qin Li2,3, Rinaldo Bellomo7,8, Clive N May1
1Howard Florey Institute, University of Melbourne, Melbourne, Australia
2Surgical ICU, Department of General Surgery, Jinling Hospital, Nanjing, China
3School of Medicine, Nanjing University, Nanjing, China
4Department of Intensive Care, Austin Health, Heidelberg, Australia
5Department of Medicine, Austin Health, Heidelberg, Australia
6Department of Anaesthesia and Intensive Care, AO Melegnano, Cernusco sul Naviglio, Italy
7Australian and New Zealand Intensive Care Research Centre, Monash University, Victoria, Australia
8Intensive Care Unit, Austin Health, Victoria, Australia

Tóm tắt

This study aims to test the hypothesis that fluid loading with sodium chloride (150 mmol Na and 150 mmol Cl) or sodium octanoate (150 mmol Na, 100 mmol Cl, and 50 mmol octanoate) would lead to different acid–base changes. We performed a double-blind crossover experimental study. The study was done at a University Physiology Laboratory. Eight Merino ewes were used as subjects. We randomly assigned animals to a rapid intravenous infusion (1 L over 30 min) of either normal saline (NS) or sodium octanoate solution (OS). We collected blood samples at 0.5, 1, 2, 4, and 6 h after the start of the infusion for blood gas analyses and biochemistry. We calculated strong ion difference apparent (SIDa), effective strong ion difference, and strong ion gap (SIG). Animals in the NS group developed metabolic acidification immediately after fluid administration (pH 7.49 to 7.42, base excess 3.0 to -1.6 mEq/L), while the OS group did not (pH 7.47 to 7.51, base excess 1.1 to 1.4 mEq/L; P < 0.001). Additionally, the OS group had higher SIDa (36.2 vs. 33.2 mEq/L) and SIG (7.4 vs. 6.2 mEq/L) at the end of the infusion. Our findings provide further evidence that acidification induced by intravenous fluid loading is dependent on fluid composition and challenges the paradigm of the so-called dilutional acidosis.

Tài liệu tham khảo

Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett M: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiol 2000,93(5):1170–1173. 10.1097/00000542-200011000-00006 McCague A, Dermendjieva M, Hutchinson R, Wong DT, Dao N: Sodium acetate infusion in critically ill trauma patients for hyperchloremic acidosis. Scand J Trauma Resusc Emerg Med 2011, 19: 24. 10.1186/1757-7241-19-24 Zunini GS, Rando KA, Cox RG: Fluid replacement in craniofacial pediatric surgery: normal saline or ringer’s lactate? J Craniofac Surg 2011,22(4):1370–1374. 10.1097/SCS.0b013e31821c94db Mann C, Held U, Herzog S, Baenziger O: Impact of normal saline infusion on postoperative metabolic acidosis. Paediatr Anaesth 2009,19(11):1070–1077. 10.1111/j.1460-9592.2009.03126.x Doberer D, Funk GC, Kirchner K, Schneeweiss B: A critique of Stewart's approach: the chemical mechanism of dilutional acidosis. Intensive Care Med 2009,35(12):2173–2180. 10.1007/s00134-009-1528-y Garella S, Chang BS, Kahn SI: Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 1975,8(5):279–283. 10.1038/ki.1975.114 Goodkin DA, Raja RM, Saven A: Dilutional acidosis. South Med J 1990,83(3):354–355. 10.1097/00007611-199003000-00029 Waters JH, Bernstein CA: Dilutional acidosis following hetastarch or albumin in healthy volunteers. Anesthesiol 2000,93(5):1184–1187. 10.1097/00000542-200011000-00008 Guidet B, Soni N, Della Rocca G, Kozek S, Vallet B, Annane D, James M: A balanced view of balanced solutions. Crit Care 2010,14(5):325. 10.1186/cc9230 Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 1983,61(12):1444–1461. 10.1139/y83-207 Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 1992,120(5):713–719. Scheingraber S, Rehm M, Sehmisch C, Finsterer U: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999,90(5):1265–1270. 10.1097/00000542-199905000-00007 Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR: Normal saline versus lactated Ringer's solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 2001,93(4):817–822. 10.1097/00000539-200110000-00004 Morgan TJ, Venkatesh B, Hall J: Crystalloid strong ion difference determines metabolic acid–base change during in vitro hemodilution. Crit Care Med 2002,30(1):157–160. 10.1097/00003246-200201000-00022 Van Zyl DG, Rheeder P, Delport E: Fluid management in diabetic-acidosis—Ringer's lactate versus normal saline: a randomized controlled trial. QJM 2011,105(4):337–343. Chowdhury AH, Cox EF, Francis ST, Lobo DN: A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 2012,256(1):18–24. 10.1097/SLA.0b013e318256be72 Aksu U, Bezemer R, Yavuz B, Kandil A, Demirci C, Ince C: Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resusc 2012,83(6):767–773. 10.1016/j.resuscitation.2011.11.022 Jackson SJ, Bluck LJ: Measurement of gastric emptying by octanoate metabolism. Curr Opin Clin Nutr Metab Care 2005,8(5):538–544. 10.1097/01.mco.0000170759.55867.64 Shalev T, Aeed H, Sorin V, Shahmurov M, Didkovsky E, Ilan Y, Avni Y, Shirin H: Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models. Dig Dis Sci 2010,55(6):1589–1598. 10.1007/s10620-009-0913-2 Derbocio AM, Lopez CH, Bracht L, Bracht A, Ishii-Iwamoto EL: The action of zymosan on octanoate transport and metabolism in the isolated perfused rat liver. J Biochem Mol Toxicol 2009,23(3):155–165. 10.1002/jbt.20269 Papamandjaris AA, MacDougall DE, Jones PJ: Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 1998,62(14):1203–1215. 10.1016/S0024-3205(97)01143-0 Sidossis LS, Stuart CA, Shulman GI, Lopaschuk GD, Wolfe RR: Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest 1996, 98: 2244–2250. 10.1172/JCI119034