Achieving sub-1.6-nm resolutions of a low-voltage microscopic focused-ion-beam system not involving aberration correction

Pleiades Publishing Ltd - Tập 37 - Trang 98-106 - 2011
V. A. Zhukov1
1St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, St. Petersburg, Russia

Tóm tắt

The final, second, part is presented of an investigation into possible methods of achieving the ultimate resolution for focused-ion-beam (FIB) microscopes. Our strategy differs from the well-known FIB technologies in the following respects: (i) It employs an advanced ion source of effective radius ≈1 nm. (ii) The ion energy at the target is as low as −300 eV. (iii) Potential secondary emission of ions and electrons is used as a means of imaging at the nanometer scale. The version in part 1 relies on a chromatic-aberration correction system based on a combined electromagnetic mirror. As an alternative, we here propose reducing the ion-optical system to a scale of tens of micrometers. It is shown by computer simulation that the resolution thus obtained should be as good as the one reported in part 1 (∼1.6 nm). Under optimal imaging conditions, the ion-beam current on a target is found to depend only on the properties of the ion source and to be the same as those of macroscopic FIB systems regardless of their operating voltage.

Tài liệu tham khảo

Zhukov, V.A., Titov, A.I., and Zav’yalova, A.V., Using a Chromatic-Aberration Correction System to Achieve Sub-1.6-nm Resolutions of a Focused-Ion-Beam Microscope Designed for Characterization and Processing, Mikroelektronika, 2007, vol. 36, no. 5, pp. 323–333 [Russ. Microelectron. (Engl. Transl.), vol. 36, no. 5, pp. 279–287]. Kalbitzer, S. and Knoblauch, A., Multipurpose Nanobeam Source with Supertip Emitter, J. Vac. Sci. Technol., B, 1998, vol. 16, no. 4, pp. 2455–2461. Knoblauch, A., Miller, T., Klatt, C., and Kalbitzer, S., Electron and Ion Emission Properties of Iridium Supertip Field Emitters, Nucl. Instrum. Methods Phys. Res., Sect. B, 1998, vol. 139, pp. 20–27. Zhukov, V.A. and Zavyalova, A.V., Combined Electromagnetic Mirror as Probable Breakthrough Tool in an Ion Nanolithography, in Proc. SPIE—Int. Soc. Opt. Eng., 2006, vol. 6260, p. 626012. Cazalilla, M.A., Lorente, N., and Diez Muino, R., Theory of Auger Neutralization and Deexcitation of Slow Ions at Metal Surfaces, Phys. Rev. B, 1998, vol. 58, no. 20, pp. 13991–14006. Zhukov, V.A. and Zav’yalova, A.V., Axially Symmetric Composite Electromagnetic Mirror for Perfect Axial-Aberration Correction, Mikroelektronika, 2006, vol. 35, no. 6, pp. 434–444 [Russ. Microelectron. (Engl. Transl.), vol. 35, no. 6, pp. 372–381]. Glaser, W., Grundlagen der Optik, Vien: Springer-Verlag, 1952. Szilagyi, M., Electron and Ion Optics, New York: Plenum, 1988. Driscill-Smith, A.A.G., Hasko, D.G., and Ahmed, H., Quantum Interference in Vacuum Nanotriode, J. Vac. Sci. Technol., B, 2000, vol. 18, no. 6, p. 3481. Kaesmaier, R. and Loeschner H., Overview of the Ion Projection Lithography European MEDEA and International Program, in Proc. SPIE—Int. Soc. Opt. Eng., 2000, vol. 3997, pp. 19–32. Kuo, H.P., Lam, S., and Sheng, X., Ultra Compact Electron-Beam Column, J. Vac. Sci. Technol., B, 2006, vol. 24, no. 2, pp. 1030–1034. Grivet, P., Electron Optics, New York: Pergamon, 1965. Bagraev, N.T., Klyachkin, L.E., Malyarenko, A.M., et al., p+-Si-n−CdF2 Heterojunctions, Fiz. Tekh. Poluprovodn. (St. Petersburg), 2005, vol. 39,issue 5, pp. 557–562 [Semiconductors (Engl. Transl.), vol. 39, no. 5, pp. 528–532]. Zhukov, V.A., Titov, A.I., Bagraev, N.T., and Nesterov, M.M., Evaluation of Focused O+ Ion Beams as a Tool for Making Resist Masks by Reactive Etching, Mikroelektronika, 2006, vol. 35, no. 5, pp. 347–354 [Russ. Microelectron. (Engl. Transl.), vol. 35, no. 5, pp. 298–303]. Zhukov, V.A., Bagraev, N.T., Titov, A.I., and Zhurkin, E.E., Delta-Doping of Monocrystalline Semiconductors by Al and Sb Implantation Using FIB Resistless Lithography, Mikroelektronika, 2004, vol. 33, no. 6, pp. 445–458 [Russ. Microelectron. (Engl. Transl.), vol. 33, no. 6, pp. 362–372]. Valiev, K.A., Fizika submikronnoi litografii (Physics of Submicrometer Lithography), Moscow: Nauka, 1990. Liu, X. and Orloff, J., Analytical Model of a Gas Phase Field Ionization Source, J. Vac. Sci. Technol., B, 2005, vol. 23, no. 6, pp. 2816–2820. Kel’man, V.M. and Yavor, S.Ya., Elektronnaya optika (Electron Optics), Leningrad: Nauka, 1968. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1976, part 1. Heidenreich, R.D., Fundamentals of Transmission Electron Microscopy, New York: Interscience, 1964. Petrov, N.N. and Abroyan, I.A., Diagnostika poverkhnosti s pomoshch’yu ionnykh puchkov (Surface Characterization with Ion Beams), Leningrad: Nauka, 1977. http://www.SRIM.org