Hoạt động ức chế acetyl- và butyrylcholinesterase của sterol và phlorotannin từ Ecklonia stolonifera

Na Y Yoon1, Hae Y Chung2, Hyeung R Kim1, Jae E Choi1
1Division of Food Science and Biotechnology, Pukyong National University, Busan, Japan
2College of Pharmacy, Pusan National University, Busan, Republic of Korea

Tóm tắt

Là một phần của nghiên cứu về việc tách tụ thành các chất ức chế cholinesterase từ các sản phẩm tự nhiên ở biển, hoạt tính sinh học của các chiết xuất etanol từ 27 loài rong biển Hàn Quốc đã được sàng lọc bằng các bài thử nghiệm ức chế acetylcholinesterase (AChE) và butyrylcholinesterase (BChE). Ecklonia stolonifera thể hiện các thuộc tính ức chế hứa hẹn đối với cả AChE và BChE. Tách biệt định hướng sinh học của các phân đoạn hòa tan n-hexane và acetate ethyl (EtOAc), thu được từ chiết xuất etanol của E. stolonifera, đã dẫn đến việc tách riêng các sterol; fucosterol (1) và 24-hydroperoxy 24-vinylcholesterol (2), từ phân đoạn n-hexane và các phlorotannins; phloroglucinol (3), ecks-tolonol (4), eckol (5), phlorofucofuroeckol-A (6), dieckol (7), triphlorethol-A (8), 2-phloroeckol (9) và 7-phloroeckol (10), từ phân đoạn EtOAc. Trong số này, các hợp chất 2, 9 và 10 lần đầu tiên được tách từ E. stolonifera. Các hợp chất 4–7, 9 và 10 thể hiện tiềm năng ức chế đối với AChE, với giá trị nồng độ ức chế 50% (IC50) lần lượt là 42.66±8.48, 20.56±5,61, 4.89±2.28, 17.11±3.24, 38.13±4.95 và 21.11±4.16 μM; trong khi đó, các hợp chất 1, 2, 4 và 6 được phát hiện có hoạt tính đối với BChE, với giá trị IC50 lần lượt là 421.72±1.43, 176.46±2.51, 230.27±3.52 và 136.71±3.33 μM. Đã có giả thuyết rằng việc ức chế các enzyme này bởi các sterol và phlorotannins có nguồn gốc từ tảo nâu biển có thể là một phương pháp hữu ích cho việc điều trị bệnh Alzheimer.

Từ khóa

#cholinesterase inhibitors #marine natural products #Ecklonia stolonifera #AChE #BChE #phlorotannins #fucosterol

Tài liệu tham khảo

Alzheimer A. Über eine eijenartige Erkrankung der Hirnride. Allg. Z. Psychiatr. 1907; 64: 146–148. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2: 1403. Whitehouse PJ, Price DL, Struble GR, Clarke AW, Coyle JT, DeLong MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 15: 1237–1239. Schulz V. Ginkgo extract or, cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 2003; 10: 74–79. Small GW, Robins RV, Barry PP, Buckholts NS, Dekosky ST, Ferris SH, Finkel SI, Gwyther LP, Khachaturian ZS, Lebowitz BD, McRae TD, Morris JO, Oakley F, Schneider LS, Streim JE, Sunderland T, Teri LA, Tune LE. Diagnosis and treatment of Alzheimer’s disease and related disorder. JAMA 1997; 278: 1363–1371 Melzer D. New drug treatment for Alzheimer’s disease: lesson for healthcare policy. BMJ 1998; 316: 762–764. Rahman AU, Parveen S, Khalid A, Farooq A, Choudhary MI. Acetyl and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 2001; 58: 963–968. Cláudia V Jr, Bolzani VS, Pimentel LSB, Castro NG, Cabral RR, Costa RS, Floyd C, Rocha MS, Young MCM, Barreiro EJ, Fraga CAM. New selective acetylcholinesterase inhibitors designed from natural piperidine alkaloids. Bioorg. Med. Chem. 2005; 13: 4184–4190. Cho KM, Yoo ID, Kim WG. 8-Hydroxydihydrochelerythrine and 8-hydroxydihytrosanguinarine with a potent acetylcholinesterase inhibitory activity from Chelidonium majus L. Biol. Pharm. Bull. 2006; 29: 2317–2320. Kim DK, Lee KT, Baek NI, Kim SH, Park HW, Lim JP, Shin TY, Eom DO, Yang JH, Eun JS. Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch. Pharm. Res. 2004; 27: 1127–1131. Rahman AU, Wahab AT, Nawaz SA, Choudhary MI. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus. Chem. Pharm. Bull. 2004; 52: 802–806. Decker M. Novel inhibitors of acetyl- and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur. J. Med. Chem. 2005; 40: 305–313. Rahman AU, Akhtar MN, Choudhary MI, Tsuda Y, Sener B, Khalid A, Parvez M. New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities. Chem. Pharm. Bull. 2002; 50: 1013–1016. Ryu GS, Park SH, Kim ES, Choi BW, Ryu SY, Lee BH. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown alga Sargassum sagamianum. Arch. Pharm. Res. 2003; 26: 796–799. Ucar G, Gokhan N, Yesilada A, Bilgin AA. 1-N-substituted thiocarbomoyl-3-phenyl-5-thienyl-2-prozolines: a novel cholinesterase and selected monoamine oxidase B inhibitors for the treatment of Parkinson’s and Alzheimer’s diseases. Neurosci. Lett. 2005; 382: 327–331. Chounhary MI, Yousuf S, Nawaz SA, Ahmed S, Rahman AU. Cholinesterase inhibiting withanolides from Withania somnifera. Chem. Pharm. Bull. 2004; 52: 1358–1361. Perry NS, Houghton PJ, Theobald A, Jennar P, Perry EK. In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Parmacol. 2000; 52: 895–902. Savelev S, Okello E, Perry NSL, Wilkins RM, Perry EK. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003; 75: 661–668. Lee JH, Lee KT, Yang JH, Baek NL, Kim DK. Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch. Pharm. Res. 2004; 27: 53–56. Orhan I, Terzioglu S, Sener B. Alpha-onocerin: an acetylcholinesterase inhibitor from Lycopodium clavatum. Planta Med. 2003; 69: 265–267. Yoo ID, Cho KM, Lee CK, Kim WG. Isoterreulactone A, a novel meroterpenoid with anti-acetylcholinesterase activity produced by Aspergillus terreus Bioorg. Med. Chem. Lett. 2005; 15: 353–356. Cho KM, Kim WG, Lee CK, Yoo ID. Terreulactones A, B, C, and D: novel acetylcholinesterase inhibitors produced by Aspergillus terreus. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2003; 56: 344–350. Mizayawa M, Tsukamoto T, Anzai J, Ishikawa Y. Insecticidal effect of phthalides and furanocoumarins from Angelica acutiloba against Drosophila melanogaster. J. Agric. Food Chem. 2004; 52: 4401–4405. Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. J. Nat. Prod. 2001; 64: 583–685. Urbain A, Marston A, Queriroz EF, Ndjoko K, Hostettmann K. A new coumarin from Murraya paniculata. Planta Med. 2004; 70: 1011–1014. Ahmad I, Anis I, Malik A, Nawaz SA, Choudhary MI. A new coumarin from Murraya paniculata. Chem. Pharm. Bull. 2003; 51: 412–414. Bruehlmann C, Marston A, Hostettmann K, Carrupt PA, Testa B. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem. Biodiversity 2004; 1: 819–829. Ahmed E, Nawaz SA, Malik A, Choudhary I. Isolation and cholinesterase-inhibition studies of sterol from Haloxylon recuvum. Bioorg. Med. Chem. Lett. 2006; 16: 573–580. Chapman VJ, Champman DJ. Seaweeds and Their Uses. Champman and Hall, New York, 1980; 62–97. Hoppe HA, Lerving T. Marine Algae in Pharmaceutical Science, Vol. 2. Walter de Gruyter, Berlin, 1982; 3–48. Srivastava R, Kulshreshtha DK. Bioactive polysaccharide from plants. Phytochemistry 1989; 28: 2877–2883. Okada Y, Ishimaru A, Suzuki R, Okuyama T. A new phloro-glucinol derivative from the brown alga Eisenia bicylis: potential for the effective treatment of diabetic complications. J. Nat. Prod. 2004; 67: 103–105. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi 1989; 55: 1259–1264. Kim YC, An RB, Yoon NY, Nam TJ, Choi JS. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in Hep G2 cells. Arch. Pharm. Res. 2005; 28: 1376–1380. Ahn MJ, Yoon KD, Kim CY, Min SY, Kim YU, Kim HJ, Kim JH, Shin CG, Lee CK, Kim TG, Kim SH Huh H, Kim JW. Inhibition of HIV-1 reverse transcriptase and HIV-1 integrase and antiviral activity of Korean seaweed extracts. J. Appl. Phycol. 2002; 14: 325–329. Fukuyama Y, Kodama M, Miura J, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem. Pharm. Bull. 1989; 37: 349–353. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome Okamura. Chem. Pharm. Bull. 1990; 38: 133–135. Nagayama K, Shibata T, Fujimoto K, Honjo H, Nakamura T. Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 2003; 218: 601–611. Kang HS, Kim HR, Byun DS, Son BW, Nam TJ, Choi JS. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004; 27: 1226–1232. Shin HC, Hwang HJ, Kang KJ, Lee BH. An antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 2006; 29: 165–171. Choi JS, Lee JH, Jung JH. The screening of nitrite scavenging effect of marine algae and active principles of Ecklonia stolonifea. J. Kor. Fish. Soc. 1997; 30: 909–915. Kim MM, Ta QV, Mendis E, Rajapakse N, Jung WK, Byun HK, Jeon YJ, Kim SK. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 2006; 79: 1436–1443. Joe MJ, Kim SN, Choi HY, Shin WS, Park GM, Kang DW, Kim YK. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-I in human dermal fibroblasts. Biol. Pharm. Bull. 2006; 29: 1735–1739. Athukorala Y, Jung WK, Vasanthan T, Jeon YJ. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydr. Polym. 2006; 66: 184–191. Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. J Food Chem. Toxicol. 2006; 44: 1144–1150. Kang HS, Chung HY, Kim JY, Son BW, Jung HA, Choi JS. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 2004; 27: 194–198. Kang HS, Chung HY, Jung JH, Son BW, Choi JS. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 2003; 51: 1012–1014. Sugiura Y, Matsuda K, Yamada Y, Nishikawa M, Shioya K, Katsuzaki H, Imai K, Amano H. Isolation of a new antiallergic phlorotannin, phlorofucofuroeckol-B, from an edible brown alga, Eisenia arborea. Biosci. Biotechnol. Biochem. 2006; 70: 2807–2811. Park CS, Hwang EK, Lee SJ, Roh KW, Sohn CH. Age of growth of Ecklonia stolonifera Okamura in Pusan bay, Korea. Bull. Kor. Fish. Soc. 1994; 27: 390–396. Taniguchi K, Kurata K, Suzuki M. Feeding-detergent effect of phlorotannins from the brown alga Ecklonia stolonifera against the abalone Haliotis discus hannai. Nippon Suisan Gakkaishi 1991; 57: 2065–2071. Park DC, Ji CI, Jung KJ, Lee TG, Kim IS, Park YH, Kim SB. Characteristics of tyrosinase inhibitory extract from Ecklonia stolonifera. J. Kor. Fish. Soc. 2000; 3: 195–199. Jung HA, Hyun SK, Kim HR, Choi JS. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish. Sci. 2006; 72: 1292–1299. Ellman GL, Courtney D, Andres KDV, Featherstone RM. A new and rapid colorimetric determination of acetylcholineserase activity. Biochem. Pharmacol. 1961; 7: 88–95. Govindan M, Hodge JD, Brown KA, Nunez-Smith M. Distribution of cholesterol in Caribbean marine algae. Steroids 1993; 58: 178–180. Sheu JH, Wang GH, Sung PJ, Chiu YH, Duh CY. Chtotoxic sterols from the Formosan brown alga Turbinaria ornate. Planta Med. 1997; 63: 571–572. Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M. Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α2-macroglobulin from the brown alga Ecklonia kurome Okamura. Chem. Lett. 1985, 739–742. Houghton PJ, Ren Y, Howes MJ. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006; 23: 181–199. Silman I, Sussman JL. Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr. Opin. Pharmacol. 2005; 5: 293–302. Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2001; 2: 294–302. Mack A, Robitzki A. The key, role of butyrylcholinesterase during neurogenesis and neural disorders: an antisense-5′-butyrylcholinesterase-DNA study. Prog. Neurobiol 2000; 60: 607–628. Rakinczay Z, Brimijoin S. Biochemistry and pathophysiology of the molecular forms of cholinesterase. Subcell. Biochem. 1988; 12: 335–378. Giacobini E. Drugs that target cholinesterase. In: Buccafusco JJ (ed.). Cognitive Enhancing Drugs. Birkhäuser-Verlag. Basel. 2004: 11–36. Yu SQ, Utsuki HW, Brossi T, Greig ANH. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J. Med. Chem. 1999; 42: 1855–1861. Myung CS, Shin HC, Bao HY, Yeo SJ, Lee BH, Kang JS. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 2005; 28: 691–698. Lee SH, Lee YS, Jung SH, Kang SS, Shin KH. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch. Pharm. Res. 2003; 26: 719–722. Lee YS, Shin KH, Kim BK, Lee SH. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch. Pharm. Res. 2004; 27: 1120–1122. Brenner GM. Pharmacology. W.B. Saunders Company, Philadelphia, PA. 2000.