Accurate and interpretable evaluation of surgical skills from kinematic data using fully convolutional neural networks

Springer Science and Business Media LLC - Tập 14 Số 9 - Trang 1611-1617 - 2019
Hassan Ismail Fawaz1, Germain Forestier1, Jonathan Weber1, Lhassane Idoumghar1, Pierre-Alain Müller1
1Institut de Recherche en Informatique Mathématiques Automatique Signal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD (2017) A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 64(9):2025–2041

Bridgewater B, Grayson AD, Jackson M, Brooks N, Grotte GJ, Keenan DJ, Millner R, Fabri BM, Mark J (2003) Surgeon specific mortality in adult cardiac surgery: comparison between crude and risk stratified data. BMJ 327(7405):13–17

Chollet Fea (2015) Keras. https://keras.io

Forestier G, Petitjean F, Senin P, Despinoy F, Jannin P (2017) Discovering discriminative and interpretable patterns for surgical motion analysis. In: Artificial intelligence in medicine, pp 136–145

Forestier G, Petitjean F, Senin P, Despinoy F, Huaulmé A, Ismail Fawaz H, Weber J, Idoumghar L, Muller PA, Jannin P (2018) Surgical motion analysis using discriminative interpretable patterns. Artif Intell Med 91:3–11

Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Béjar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) The JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: Modeling and monitoring of computer assisted interventions—MICCAI workshop

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Int Conf Artif Intell Stat 9:249–256

Hatala R, Cook DA, Brydges R, Hawkins R (2015) Constructing a validity argument for the objective structured assessment of technical skills (OSATS): a systematic review of validity evidence. Adv Health Sci Educ 20(5):1149–1175

Intuitive Surgical Sunnyvale CA (2018) The Da Vinci Surgical System

Islam G, Kahol K, Li B, Smith M, Patel VL (2016) Affordable, web-based surgical skill training and evaluation tool. J Biomed Inf 59:102–114

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2018) Evaluating surgical skills from kinematic data using convolutional neural networks. In: International conference on medical image computing and computer assisted intervention, pp 214–221

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2018) Transfer learning for time series classification. In: IEEE international conference on big data, pp 1367–1376

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery

Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, Vander Poorten E (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11(4):553–568

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations

Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691–696

Niitsu H, Hirabayashi N, Yoshimitsu M, Mimura T, Taomoto J, Sugiyama Y, Murakami S, Saeki S, Mukaida H, Takiyama W (2013) Using the objective structured assessment of technical skills (OSATS) global rating scale to evaluate the skills of surgical trainees in the operating room. Surg Today 43(3):271–275

Polavarapu HV, Kulaylat A, Sun S, Hamed O (2013) 100 years of surgical education: the past, present, and future. Bull Am Coll Surg 98(7):22–29

Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparse hidden Markov models for surgical gesture classification and skill evaluation. In: Information processing in computer-assisted interventions, pp 167–177

Vedula SS, Malpani AO, Tao L, Chen G, Gao Y, Poddar P, Ahmidi N, Paxton C, Vidal R, Khudanpur S, Hager GD, Chen CCG (2016) Analysis of the structure of surgical activity for a suturing and knot-tying task. Public Libr Sci One 11(3):1–14

Wang Z, Majewicz Fey A (2018) Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg 13(12):1959–1970

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a strong baseline. In: International joint conference on neural networks, pp 1578–1585

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: IEEE conference on computer vision and pattern recognition, pp 2921–2929

Zia A, Essa I (2018) Automated surgical skill assessment in RMIS training. Int J Comput Assist Radiol Surg 13(5):731–739