Accumulation and variability of maize pollen deposition on leaves of European Lepidoptera host plants and relation to release rates and deposition determined by standardised technical sampling
Tóm tắt
Risk assessment for GMOs such as Bt maize requires detailed data concerning pollen deposition onto non-target host-plant leaves. A field study of pollen on lepidopteran host-plant leaves was therefore undertaken in 2009–2012 in Germany. During the maize flowering period, we used in situ microscopy at a spatial resolution adequate to monitor the feeding behaviour of butterfly larvae. The plant-specific pollen deposition data were supplemented with standardised measurements of pollen release rates and deposition obtained by volumetric pollen monitors and passive samplers. In 2010, we made 5377 measurements of maize pollen deposited onto leaves of maize, nettle, goosefoot, sorrel and blackberry. Overall mean leaf deposition during the flowering period ranged from 54 to 478 n/cm2 (grains/cm2) depending on plant species and site, while daily mean leaf deposition values were as high as 2710 n/cm2. Maximum single leaf-deposition values reached up to 103,000 n/cm2, with a 95 % confidence-limit upper boundary of 11,716 n/cm2. Daily means and variation of single values uncovered by our detailed measurements are considerably higher than previously assumed. The recorded levels are more than a single degree of magnitude larger than actual EU expert risk assessment assumptions. Because variation and total aggregation of deposited pollen on leaves have been previously underestimated, lepidopteran larvae have actually been subjected to higher and more variable exposure. Higher risks to these organisms must consequently be assumed. Our results imply that risk assessments related to the effects of Bt maize exposure under both realistic cultivation conditions and worst-case scenarios must be revised. Under common cultivation conditions, isolation buffer distances in the kilometre range are recommended rather than the 20–30 m distance defined by the EFSA.
Tài liệu tham khảo
Emberlin J, Adams-Groom B, Tidmarsh J (1999) A report on the dispersal of maize pollen. Research paper commissioned by the Soil Association
European Food Safety Authority, EFSA (2009) Applications (EFSA-GMO-RX-MON810) for renewal of authorisation for the continued marketing of (1) existing food and food ingredients produced from genetically modified insect resistant maize MON810; (2) feed consisting of and/or containing maize MON810, including the use of seed for cultivation; and of (3) food and feed additives, and feed materials produced from maize MON810, all under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 1149:1–85
European Food Safety Authority, EFSA (2011) Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 9(11):2428. doi:10.903/j.efsa.011
European Food Safety Authority, EFSA (2011) Scientific Opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA J 9(11):2429. doi:10.903/j.efsa.011
Lang A, Otto M (2010) A synthesis of laboratory and field studies on the effects of transgenic Bacillus thuringiensis (Bt) maize on non-target Lepidoptera. Entomol Exp Appl 135(2):121–134. doi:10.1111/j.1570-7458.2010.00981.x
Holst N, Lang A, Lövei G, Otto M (2013) Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland. Ecol Model 250:126–133. doi:10.1016/j.ecolmodel.2012.11.006
Perry JN, Devos Y, Arpaia S, Bartsch D, Ehlert C, Gathmann A et al (2012) Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure. J Appl Ecol 49(1):29–37. doi:10.1111/j.1365-2664.2011.02083.x
Perry JN, Arpaia S, Bartsch D, Birch ANE, Devos Y, Gathmann A et al (2013) No evidence requiring change in the risk assess-ment of Inachis io larvae. Ecol Model 268:103–122
Hofmann F, Otto M, Wosniok W (2014) Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation—results of 10 years of monitoring (2001–2010). Environ Sci Eur 26(1):24. doi:10.1186/s12302-014-0024-3
Hofmann F, Schlechtriemen U, Kuhn U, Wittich K-P, Koch W, Ober S et al (2013) Variation of maize pollen shedding in North Germany and its relevance for GMO-monitoring. Theorie in der Ökologie 17:19–25
Perry JN, Devos Y, Arpaia S, Bartsch D, Gathmann A, Hails RS et al (2010) A mathematical model of exposure of non-target Lepidoptera to Bt-maize pollen expressing Cry1Ab within Europe. Proc R Soc Biol Sci 277(1686):1417–1425. doi:10.1098/rspb.2009.2091
Perry JN, Devos Y, Arpaia S, Bartsch D, Gathmann A, Hails RS et al (2011) The usefulness of a mathematical model of exposure for environmental risk assessment. Proc R Soc Biol Sci Ser B 278:982–984
Holst N, Lang A, Lövei G, Otto M. Corrigendum to “Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland” [Ecol. Model. 250 (2013) 126–133]. Ecological Modelling. 2013;265:250. doi:10.1016/j.ecolmodel.2013.06.023
European Food Safety Authority, EFSA (2015) Updating risk management recommendations to limit exposure of non-target Lepidoptera of conservation concern in protected habitats to Bt-maize pollen. EFSA J 13:4127. doi:10.2903/j.efsa.2015.4127
Hofmann F, Otto M, Kuhn U, Ober S, Schlechtriemen U, Vögel R (2011) A new method for in Situ measurement of Bt-maize pollen deposition on host-plant leaves. Insects 2(4):12–21. doi:10.3390/insects2010012
Durham OC (1946) The volumetric incidence of airborne allergens. IV. A proposed standard method of gravity sampling, counting and volumetric interpretation of results. Allergy 17:79–86
Gregory PH (1973) The microbiology of the atmosphere. A plant science monograph. Hill Books, Aylesbury
Edmonds RL (1979) Aerobiology: the ecological systems approach. Dowden, Hutchinson & Ross, Stroudsburg
Association of German Engineers (2007) VDI-Standard: 4330 Blatt 3—Monitoring the effects of genetically modified organisms (GMO)—Pollen monitoring—Technical pollen sampling using pollen mass filter (PMF) and Sigma-2 sampler. Beuth, Berlin
Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265
Stanley-Horn DE, Dively GP, Hellmich RL, Mattila HR, Sears MK, Rose R et al (2001) Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proc Natl Acad Sci USA 98(21):11931–11936. doi:10.1073/pnas.211277798
Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, Mattila HR et al (2001) Corn pollen deposition on milkweeds in and near cornfields. Proc Natl Acad Sci USA 98(21):11919–11924. doi:10.1073/pnas.211287498
Dively GP, Stanley-Horn DE, Rose R, Sears MK, Calvin DD, Anderson PL et al (2004) Effects on monarch butterfly larvae (Lepidoptera: Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environ Entomol 33(4):1116–1125
Lang A, Ludy CV (2004) E. Dispersion and deposition of Bt maize pollen in field margins. J Plant Dis Prot 111:417–428
Schuppener M, Muhlhause J, Muller AK, Rauschen S (2012) Environmental risk assessment for the small tortoiseshell Aglais urticae and a stacked Bt-maize with combined resistances against Lepidoptera and Chrysomelidae in central European agrarian landscapes. Mol Ecol 21(18):4646–4662. doi:10.1111/j.1365-294X.2012.05716.x
Zangerl AR, McKenna D, Wraight CL, Carroll M, Ficarello P, Warner R et al (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc Natl Acad Sci USA 98(21):11908–11912. doi:10.1073/pnas.171315698
Aylor DE (2005) Quantifying maize pollen movement in a maize canopy. Agric For Meteorol 131(3–4):247–256. doi:10.1016/j.agrformet.2005.06.009
Raynor GS, Hayes JV, Ogden EC (1970) Experimental data on dispersion and deposition of timothy and corn pollen from known sources. Brookhaven National Laboratory, New York, pp 1–32
Raynor GS, Ogden EC, Hayes JV (1972) Dispersion and deposition of corn pollen from experimental sources. Agron J 64:420–427
Kawashima S, Matsuo K, Du Ming Y, Takahashi Y, Inoue S, Yonemura S (2004) An algorithm for estimating potential deposition of corn pollen for environmental assessment. Environ Biosaf Res 3(4):197–207
Raynor G, Ogden E, Hayes J (1970) Experimental data on ragweed pollen dispersion and deposition from known sources. Brookhaven National Laboratory. Report, New York
European Food Safety Authority, EFSA (2011) Statement supplementing the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize Bt11 for cultivation. EFSA J 9(12):3018. doi:10.2903/j.efsa.3018
European Food Safety Authority, EFSA (2011) Panel on Genetically Modified Organisms (GMO). Statement supplementing the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize Bt11 for cultivation. EFSA J 9(12):2478. doi:10.2903/j.efsa.2478
European Food Safety Authority, EFSA (2012) Panel on Genetically Modified Organisms (GMO). Scientific Opinion supplementing the conclusions of the environmental risk assessment and risk management recommendations for the cultivation of the genetically modified insect resistant maize Bt11 and MON 810. EFSA J 10(12):3016. doi:10.2903/j.efsa.3016
Wraight CL, Zangerl AR, Carroll MJ, Berenbaum MR (2000) Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proc Natl Acad Sci USA 97(14):7700–7703. doi:10.1073/pnas.130202097
Felke M, Langenbruch GA. Auswirkungen des Pollens von transgenem Bt-Mais auf ausgewählte Schmetterlingslarven. Bonn: Bundesamt für Naturschutz; 2005. BfN-Skripten 157. https://www.bfn.de/0502_gentechnik.html. Accessed 22 Jul 2015
Hofmann F, Ober S, Janicke L, Janicke U, Kuhn U, Schlechtriemen U et al. Eintrag von Maispflanzenteilen in die Umwelt: Abschätzung der Umweltexposition für die Risikobewertung transgener Pflanzen. Bonn: Bundesamt für Naturschutz (BfN); 2013. Report No.: Final report on the R&D Projekt (FKZ 3509 89 0300); BfN-Skripten 353. https://www.bfn.de/0502_gentechnik.html. Accessed 22 Jul 2015
Hansen Jesse LC, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia 125(2):241–248. doi:10.1007/s004420000502
Vögel R, Ober S, Hofmann F, Unseld C. Agrogentechnik und Naturschutz—Wie können Schutzgebiete und aquatische Systeme wirksam vor dem Eintrag von Bt-Toxin geschützt werden? Fachbeiträge des Landesamtes für Gesundheit, Umwelt und Verbraucherschutz (LUGV). (133) (2013) http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.310761.de. Accessed 20 Jul 2015
Lang A, Beck R, Bauchhenß J (2005) Monitoring der Umweltwirkungen des Bt-Gens. Bayerische Landesanstalt für Landwirtschaft (LfL). Report No.: 7/2005:1-115
Gathmann A, Wirooks L, Hothorn LA, Bartsch D, Schuphan I (2006) Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Mol Ecol 15(9):2677–2685. doi:10.1111/j.1365-294X.2006.02962.x
Shirai Y, Takahashi M (2004) Effects of transgenic Bt corn pollen on a non-target lycaenid butterfly, Pseudozizeeria maha. Appl Entomol Zool 40(1):151–159
Oberhauser KS, Prysby MD, Mattila HR, Stanley-Horn DE, Sears MK, Dively G et al (2001) Temporal and spatial overlap between monarch larvae and corn pollen. Proc Natl Acad Sci USA 98(21):11913–11918. doi:10.1073/pnas.211234298
Lang A, Otto M (2015) Feeding behaviour on host plants may influence potential exposure to Bt-maize pollen of Aglais Urticae larvae (Lepidoptera, Nymphalidae). Insects 6:760. doi:10.3390/insects60x000x
Hofmann F, Epp R, Kalchschmid A, Kratz W, Kruse L, Kuhn U et al (2010) Monitoring of Bt-Maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007–2008. UmweltwissSchadst Forsch 22:229–251
Hofmann F, Schlechtriemen U, Kuhn U, v.d.Ohe W, v.d.Ohe K, Kruse L et al (2009) Durchführung eines GVO-Pollenmonitorings an Kulturmais in FFH-Lebensräumen. Landesumweltamt Brandenburg. http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/fb_110.pdf. Accessed 20 Jul 2015
CEN (2015) European Committee for Standardization. Ambient air—Monitoring the effects of genetically modified organisms (GMO)—Pollen monitoring. Part 1: Technical pollen sampling using pollen mass filter (PMF) and Sigma-2-sampler. Brussels; CEN-TS 16817-1
Hofmann F (2007) Kurzgutachten zur Abschätzung der Maispollendeposition in Relation zur Entfernung von Maispollenquellen mittels technischem Pollensammler PMF. Bundesamt für Naturschutz. http://www.bfn.de/fileadmin/MDB/documents/themen/agrogentechnik/07-05-31_Gutachten_Pollendeposition_end.pdf. Accessed 28 Aug 2015
Lauber E (2011) Cry1 toxin content of MON810 Bt-corn and the effect of its pollen on protected butterfly species in Hungary. PhD Thesis. University of Budapest
Microsoft Corporation M: Microsoft Office Excel®. 2010
XLSTAT. Addinsoft, New York. ᅟ http://www.xlstat.com/. Accessed 13 Dec 2014
R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna
Silverman BW (1990) Density Estimation for Statistics and Data Analysis. Chapman & Hall, London
Di-Giovanni F, Kevan PG, Nasr MR (1995) The variability in settling velocities of some pollen and spares. Grana 34:39–44
Chamecki M, Gleicher SC, Dufault NS, Isard SA (2011) Diurnal variation in settling velocity of pollen released from maize and consequences for atmospheric dispersion and cross-pollination. Agric For Meteorol 151(8):1055–1065. doi:10.1016/j.agrformet.2011.03.009
Aylor DE, Schultes NP, Shields EJ (2003) An aerobiological framework for assessing cross-pollination in maize. Agric For Meteorol 119(3–4):111–129
Hofmann F, Janicke L, Janicke U, Wachter R, Kuhn U (2009) Modellrechnungen zur Ausbreitung von Maispollen unter Worst-Case-Annahmen mit Vergleich von Freilandmessdaten. Bonn: Bundesamt für Naturschutz (BfN), p 1–47. http://www.bfn.de/fileadmin/MDB/documents/service/Hofmann_et_al_2009_Maispollen_WorstCase_Modell.pdf. Accessed 28 Aug 2015