Accounting for Heterogeneity: Mixed-Effects Models in Resting-State EEG Data in a Sample of Tinnitus Sufferers
Tóm tắt
In neuroscience, neural oscillations and other features of brain activity recorded by electroencephalography (EEG) are typically statistically assessed on the basis of the study’s population mean to identify possible blueprints for healthy subjects, or subjects with diagnosable neurological or psychiatric disorders. Despite some inter-individual similarities, there is reason to believe that a discernible portion of the individual brain activity is subject-specific. In order to encompass the potential individual source of variance in EEG data and psychometric parameters, we introduce an innovative application of linear mixed-effects models (LMM) as an alternative procedure for the analysis of resting-state EEG data. Using LMM, individual differences can be modelled through the assumptions of idiosyncrasy of all responses and dependency among data points (e.g., from the same subject within and across units of time) via random effects parameters. This report provides an example of how LMM can be used for the statistical analysis of resting-state EEG data in a heterogeneous group of subjects; namely, people who suffer from tinnitus (ringing in the ear/s). Results from 49 participants (38 male, mean age of 46.69 ± 12.65 years) revealed that EEG signals were not only associated with specific recording sites, but exhibited regional specific oscillations in conjunction to symptom severity. Tinnitus distress targeted the frequency bands beta3 (23.5–35 Hz) and gamma (35.5–45 Hz) in right frontal regions, whereas delta (0.5–4 Hz) exhibited significant changes in temporal-parietal sources. Further, 57.8% of the total variance in EEG power was subject-specific and acknowledged by the LMM framework and its prediction. Thus, a deeper understanding of both the underlying statistical and physiological patterns of EEG data was gained.
Tài liệu tham khảo
Adjamian P (2014) The application of electro- and magneto-encephalography in tinnitus research-methods and interpretations. Front Neurol 5:228. https://doi.org/10.3389/fneur.2014.00228
Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253(1):15–31. https://doi.org/10.1016/j.heares.2009.04.001
Adjamian P, Sereda M, Zobay O, Hall DA, Palmer AR (2012) Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J Assoc Res Otolaryngol 13(5):715–731. https://doi.org/10.1007/s10162-012-0340-5
Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Memo Lang 59(4):390–412. https://doi.org/10.1016/j.jml.2007.12.005
Bagiella E, Sloan R, Heitjan DF (2000) Mixed-effects models in psychophysiology. Psychophysiology 37(1):13–20
Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, Nolan D, Bryant E, Hartley T, Footer O, Bjork JM, Poldrack R, Smith S, Johansen-Berg H, Snyder AZ, van Essen DC (2013) Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage 80:169–189. https://doi.org/10.1016/j.neuroimage.2013.05.033
Barr DJ, Levy R, Scheepers C, Tily HJ (2013) Random effects structure for confirmatory hypothesis testing: keep it maximal. J Mem Lang. https://doi.org/10.1016/j.jml.2012.11.001
Bartko JJ (1966) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19(1):3–11. https://doi.org/10.2466/pr0.1966.19.1.3
Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. https://arxiv.org/pdf/1406.5823
Bates DM (2010) lme4: mixed-effects modeling with R. Berlin.
Berger H (1929) Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87(1):527–570. https://doi.org/10.1007/BF01797193
Bliese P (2016) Multilevel: multilevel functions. https://CRAN.R-project.org/package=multilevel
Bolker BM (2015) Linear and generalized linear mixed models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: contemporary theory and application. Oxford University Press, Oxford, pp 309–333
Cederroth CR, Canlon B, Langguth B (2013) Hearing loss and tinnitus—are funders and industry listening? Nat Biotechnol. https://doi.org/10.1038/nbt.2736
Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth & Brooks/Cole, California
Chu CJ, Kramer MA, Pathmanathan J, Bianchi MT, Westover MB, Wizon L, Cash SS (2012) Emergence of stable functional networks in long-term human electroencephalography. J Neurosci 32(8):2703–2713. https://doi.org/10.1523/JNEUROSCI.5669-11.2012
Cornew L, Roberts TPL, Blaskey L, Edgar JC (2012) Resting-state oscillatory activity in autism spectrum disorders. J Autism Dev Disord 42(9):1884–1894. https://doi.org/10.1007/s10803-011-1431-6
Cox R, Schapiro AC, Stickgold R (2018) Variability and stability of large-scale cortical oscillation patterns. Netw Neurosci 2(4):481–512. https://doi.org/10.1162/netn_a_00046
Dempster AP, Patel CM, Selwyn MR, Roth AJ (1984) Statistical and computational aspects of mixed model analysis. Appl Stat 33(2):203. https://doi.org/10.2307/2347446
De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108(20):8075–8080. https://doi.org/10.1073/pnas.1018466108
Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27(11):676–682. https://doi.org/10.1016/j.tins.2004.08.010
Elgoyhen AB, Langguth B, De Ridder D, Vanneste S (2015) Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 16(10):632. https://doi.org/10.1038/nrn4003
Field A, Miles J, Field Z (2013) Discovering statistics using R (Reprint). Sage.
Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT (2015) Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci 18(11):1664. https://doi.org/10.1038/nn.4135
Fisher RA (1992) Statistical methods for research workers. In: Kotz S, Johnson NL (eds) Springer series in statistics, perspectives in statistics. Breakthroughs in statistics: methodology and distribution. Springer, New York, pp 66–70
Frackell K, Hoare DJ (2014) Questionnaires to measure tinnitus severity. ENT Audiol News 22(6):718–723
Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge
Green BF, Tukey JW (1960) Complex analyses of variance: general problems. Psychometrika 25(2):127–152. https://doi.org/10.1007/BF02288577
Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, van Wassenhove V, Wibral M, Schoffelen J-M (2013) Good practice for conducting and reporting MEG research. NeuroImage 65:349–363. https://doi.org/10.1016/j.neuroimage.2012.10.001
Güntensperger D, Thüring C, Kleinjung T, Neff P, Meyer M (2019) Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plast, 2019.
Güntensperger D, Thüring C, Meyer M, Neff P, Kleinjung T (2017) Neurofeedback for tinnitus treatment-review and current concepts. Front Aging Neurosci 9:386. https://doi.org/10.3389/fnagi.2017.00386
Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R (2018) A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794. https://doi.org/10.7717/peerj.4794
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biomet J 50(3):346–363
Houslay TM, Wilson AJ (2017) Avoiding the misuse of BLUP in behavioural ecology. Behav Ecol 28(4):948–952. https://doi.org/10.1093/beheco/arx023
Hox JJ (2002) Multilevel analysis: techniques and applications. Erlbaum, Mahwah
Hullfish J, Sedley W, Vanneste S (2019) Prediction and perception: Insights for (and from) tinnitus. Neurosci Biobehav Rev 102:1–12. https://doi.org/10.1016/j.neubiorev.2019.04.008
Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8(4):221–254. https://doi.org/10.1016/0168-0102(90)90031-9
Joos K, Vanneste S, De Ridder D (2012) Disentangling depression and distress networks in the tinnitus brain. PLoS ONE 7(7):e40544. https://doi.org/10.1371/journal.pone.0040544
Judd CM, Westfall J, Kenny DA (2012) Treating stimuli as a random factor in social psychology: a new and comprehensive solution to a pervasive but largely ignored problem. J Pers Soc Psychol 103(1):54–69. https://doi.org/10.1037/a0028347
Kennedy V, Wilson C, Stephens D (2004) Quality of life and tinnitus. Audiol Med 2(1):29–40. https://doi.org/10.1080/16513860410027349
Kleinjung T, Fischer B, Langguth B, Sand PG, Hajak G, Dvorakova J, Eichhammer P (2007) Validierung einer deutschsprachigen Version des „Tinnitus Handicap Inventory”. Psychiatr Prax 34(S1):40–142
Kreft I, de Leeuw J (1998) Introducing multilevel modeling. SAGE Publications Ltd, Thousand Oaks
Landgrebe M, Azevedo A, Baguley D, Bauer C, Cacace A, Coelho C, Dornhoffer J, Figueiredo R, Flor H, Hajak G, van de Heyning P, Hiller W, Khedr E, Kleinjung T, Koller M, Lainez JM, Londero A, Martin WH, Mennemeier M, Piccirillo J, De Ridder D, Rupprecht R, Searchfield G, Vanneste S, Zeman F, Langguth B (2012) Methodological aspects of clinical trials in tinnitus: a proposal for an international standard. J Psychosom Res 73(2):112–121
Langguth B, Goodey R, Azevedo A, Bjorne A, Cacace A, Crocetti A, Del Bo L, De Ridder D, Diges I, Elbert T, Flor H, Herraiz C, Ganz Sanchez T, Eichhammer P, Figueiredo R, Hajak G, Kleinjung T, Landgrebe M, Londero A,⋯Vergara R (2007) Consensus for tinnitus patient assessment and treatment outcome measurement: tinnitus Research Initiative meeting, Regensburg, July 2006. In: AR Moller, B Langguth, G Hajak, T Kleinjung, A Cacace (eds.), Progress in Brain research: vol. 166. Tinnitus: pathophysiology and treatment: pathophysiology and treatment (1st edn., vol. 166, pp. 525–536). Elsevier textbooks. https://doi.org/10.1016/S0079-6123(07)66050-6
Lenth R (2019) emmeans: estimated marginal means, aka least-squares means. https://CRAN.R-project.org/package=emmeans
Luke SG (2017) Evaluating significance in linear mixed-effects models in R. Behav Res Methods 49(4):1494–1502. https://doi.org/10.3758/s13428-016-0809-y
Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D (2017) Balancing Type I error and power in linear mixed models. J Mem Lang 94:305–315. https://doi.org/10.1016/j.jml.2017.01.001
Meyer M, Luethi MS, Neff P, Langer N, Büchi S (2014) Disentangling tinnitus distress and tinnitus presence by means of EEG power analysis. Neural Plast 2014:468546. https://doi.org/10.1155/2014/468546
Meyer M, Neff P, Grest A, Hemsley C, Weidt S, Kleinjung T (2017) Eeg oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Res 1663:194–204. https://doi.org/10.1016/j.brainres.2017.03.007
Miranda-Dominguez O, Mills BD, Carpenter SD, Grant KA, Kroenke CD, Nigg JT, Fair DA (2014) Connectotyping: Model based fingerprinting of the functional connectome. PLoS ONE 9(11):e111048. https://doi.org/10.1371/journal.pone.0111048
Mueller S, Wang D, Fox MD, Yeo BTT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595. https://doi.org/10.1016/j.neuron.2012.12.028
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Noreña AJ (2011) An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 35(5):1089–1109. https://doi.org/10.1016/j.neubiorev.2010.11.003
Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719. https://doi.org/10.1016/S1388-2457(00)00527-7
Pinheiro JC, Bates DM (2000) Linear mixed-effects models: basic concepts and examples. In: Pinheiro JC, Bates DM (eds) Statistics and computing: mixed-effects models in S and S-PLUS. Springer, New York, pp 3–56
R Core Team (2019) R: a language and environment for statistical computing. https://www.R-project.org/
Rauschecker JP, Leaver AM, Mühlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66(6):819–826. https://doi.org/10.1016/j.neuron.2010.04.032
Rauschecker JP, May ES, Maudoux A, Ploner M (2015) Frontostriatal gating of tinnitus and chronic pain. Trends Cognit Sci 19(10):567–578. https://doi.org/10.1016/j.tics.2015.08.002
Roberts LE, Bosnyak DJ, Thompson DC (2012) Neural plasticity expressed in central auditory structures with and without tinnitus. Front Syst Neurosci 6:40. https://doi.org/10.3389/fnsys.2012.00040
Roberts LE, Husain FT, Eggermont JJ (2013) Role of attention in the generation and modulation of tinnitus. Neurosci Biobehav Rev 37(8):1754–1773. https://doi.org/10.1016/j.neubiorev.2013.07.007
Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York
Satterthwaite FE (1941) Synthesis of variance. Psychometrika 6(5):309–316. https://doi.org/10.1007/BF02288586
Schlee W, Hartmann T, Langguth B, Weisz N (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11. https://doi.org/10.1186/1471-2202-10-11
Schlee W, Leirer V, Kolassa S, Thurm F, Elbert T, Kolassa I-T (2012) Development of large-scale functional networks over the lifespan. Neurobiol Aging 33(10):2411–2421. https://doi.org/10.1016/j.neurobiolaging.2011.11.031
Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T (2008) Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 3(11):e3720. https://doi.org/10.1371/journal.pone.0003720
Sedley W, Friston KJ, Gander PE, Kumar S, Griffiths TD (2016) An Integrative tinnitus model based on sensory precision. Trends Neurosci 39(12):799–812. https://doi.org/10.1016/j.tins.2016.10.004
Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat Rev Neurol 12(3):150–160. https://doi.org/10.1038/nrneurol.2016.12
Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS (2019) afex: analysis of factorial experiments
Singmann H, Kellen D (2017) An introduction to mixed models for experimental psychology. New Methods Neurosci Cognit Psychol.
Valizadeh SA, Riener R, Elmer S, Jäncke L (2019) Decrypting the electrophysiological individuality of the human brain: identification of individuals based on resting-state EEG activity. NeuroImage 197:470–481. https://doi.org/10.1016/j.neuroimage.2019.04.005
Vanneste S, Plazier M, van der Loo E, van Heyning P, de Congedo M, de Ridder D (2010) The neural correlates of tinnitus-related distress. NeuroImage 52(2):470–480. https://doi.org/10.1016/j.neuroimage.2010.04.029
Vanneste S, De Ridder D (2012) The auditory and non-auditory brain areas involved in tinnitus: an emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci 6:31. https://doi.org/10.3389/fnsys.2012.00031
Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. https://doi.org/10.1371/journal.pmed.0020153
Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360. https://doi.org/10.1038/ng.546
Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179(2):173–179. https://doi.org/10.1007/BF00304699
Zirke N, Goebel G, Mazurek B (2010) Tinnitus und psychische Komorbiditäten. HNO 58(7):726–732. https://doi.org/10.1007/s00106-009-2050-9
Zobay O, Palmer AR, Hall DA, Sereda M, Adjamian P (2015) Source space estimation of oscillatory power and brain connectivity in tinnitus. PLoS ONE 10(3):e0120123. https://doi.org/10.1371/journal.pone.0120123
Zuur AF (2009) Mixed effects models and extensions in ecology with R Statistics for biology and health. Springer, New York