Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways

RNA - Tập 16 Số 6 - Trang 1196-1204 - 2010
Paul C. Whitford1,2, Peter Geggier3, Russ B. Altman3, Scott C. Blanchard3, José N. Onuchic1, Karissa Y. Sanbonmatsu2
1Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
2Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, USA

Tóm tắt

The ribosome is a massive ribonucleoprotein complex (∼2.4 MDa) that utilizes large-scale structural fluctuations to produce unidirectional protein synthesis. Accommodation is a key conformational change during transfer RNA (tRNA) selection that allows movement of tRNA into the ribosome. Here, we address the structure–function relationship that governs accommodation using all-atom molecular simulations and single-molecule fluorescence resonance energy transfer (smFRET). Simulations that employ an all-atom, structure-based (Gō-like) model illuminate the interplay between configurational entropy and effective enthalpy during the accommodation process. This delicate balance leads to spontaneous reversible accommodation attempts, which are corroborated by smFRET measurements. The dynamics about the endpoints of accommodation (the A/T and A/A conformations) obtained from structure-based simulations are validated by multiple 100–200 ns explicit-solvent simulations (3.2 million atoms for a cumulative 1.4 μs), and previous crystallographic analysis. We find that the configurational entropy of the 3′-CCA end of aminoacyl-tRNA resists accommodation, leading to a multistep accommodation process that encompasses a distribution of parallel pathways. The calculated mechanism is robust across simulation methods and protocols, suggesting that the structure of the accommodation corridor imposes stringent limitations on the accessible pathways. The identified mechanism and observed parallel pathways establish an atomistic framework for interpreting a large body of biochemical data and demonstrate that conformational changes during translation occur through a stochastic trial-and-error process, rather than in concerted lock-step motions.

Từ khóa


Tài liệu tham khảo

10.1021/cr040426m

10.1016/j.molcel.2008.10.001

10.1515/BC.2005.098

10.1560/IJEE_52_3-4_359

10.1146/annurev.biophys.093008.131427

10.1016/0010-4655(95)00042-E

10.1126/science.1175800

10.1016/j.sbi.2009.01.002

10.1038/nsmb831

10.1021/j100356a007

10.1002/prot.340210302

10.1006/jmbi.2000.3693

10.1126/science.1111408

10.1093/nar/gkn1040

10.1016/j.bpj.2008.11.061

10.1016/j.febslet.2004.10.105

10.1529/biophysj.108.131565

Frenkel D , Smit B . 1996. Understanding molecular simulation: From algorithms to applications, 2nd ed. Elsevier, San Diego, CA.

10.1021/ja074191i

10.1002/(SICI)1097-0134(199710)29:2<153::AID-PROT3>3.0.CO;2-E

10.1016/j.str.2009.09.010

10.1021/ct700301q

10.3390/ijms10030889

10.1016/j.sbi.2009.03.004

10.1073/pnas.0810953105

2001, GROMACS 3.0: A package for molecular simulation and trajectory analysis, J Mol Model, 7, 306, 10.1007/s008940100045

10.1006/jmbi.1994.1448

10.1073/pnas.87.5.1950

10.1002/jcc.20935

10.1016/j.molcel.2007.01.022

10.1073/pnas.0801795105

10.1093/nar/gkn643

2009, Minimal models for proteins and RNA: From folding to function, Molecular biology of protein folding, Vol. 84, 203

10.1073/pnas.0804861105

10.1146/annurev.biochem.70.1.415

10.1073/pnas.0503456102

10.1016/0263-7855(94)80072-3

10.1016/S0092-8674(00)00084-2

10.1126/science.1179700

10.1038/emboj.2009.26

10.1017/S1355838200000364

10.1073/pnas.1632476100

10.1529/biophysj.104.058495

10.1529/biophysj.104.040162

10.1016/j.molcel.2008.02.026

10.1073/pnas.0811370106

10.1038/nsmb.1577

10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

10.1016/j.jsb.2004.01.005

10.1002/prot.22253

10.1016/j.bpj.2008.10.033

10.1107/S0907444900014736

10.1126/science.1060089

10.1126/science.1175275