Thích ứng của Chlamydomonas reinhardtii với cường độ ánh sáng cực mạnh

Olli Virtanen1, Sergey Khorobrykh1, Esa Tyystjärvi1
1Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland

Tóm tắt

Tóm tắtPhần lớn các sinh vật quang hợp đều nhạy cảm với ánh sáng quá mạnh, mặc dù cơ chế thích ứng giúp họ có khả năng đối phó với việc tiếp xúc với cường độ ánh sáng mạnh đến một mức độ nhất định. Trong nghiên cứu này, chúng tôi cho thấy rằng các mẫu cấy vi khuẩn Chlamydomonas reinhardtii dòng dại cc124, khi tiếp xúc với mật độ dòng quang photon 3000 μmol m−2 s−1 trong vài ngày, đã có khả năng phát triển và sinh trưởng đột ngột. Chúng tôi đã so sánh các kiểu hình của tế bào điều khiển và tế bào đã thích nghi với ánh sáng cực mạnh (EL). Kết quả cho thấy rằng sự đa dạng di truyền hoặc biến đổi epigenetic, phát triển trong quá trình duy trì quần thể dưới ánh sáng ở mức độ vừa phải, đóng góp vào khả năng thích ứng. Quá trình thích ứng với ánh sáng cực mạnh đi kèm với một tỷ lệ carotenoid-chlorophyll cao và chậm lại các phản ứng tái hợp nạp lại của PSII, có thể bằng cách ảnh hưởng đến yếu tố Arrhenius tiền số mũ của hằng số tốc độ. Phù hợp với những phát hiện này, các tế bào đã thích ứng với ánh sáng cực mạnh chỉ cho thấy một phần mười mức độ 1O2 của các tế bào điều khiển. Mặc dù mức độ 1O2 thấp, tốc độ phản ứng gây hại của quang ức chế PSII là tương tự ở các tế bào đã thích ứng với ánh sáng cực mạnh và các tế bào điều khiển. Hơn nữa, sự thích ứng ánh sáng cực mạnh có liên quan đến tốc độ chuyển electron PSII chậm đến các chất nhận nhân tạo quinone. Dữ liệu cho thấy rằng khả năng phát triển và sinh trưởng trong ánh sáng cực kỳ mạnh không giới hạn ở các sinh vật kháng quang ức chế như Chlorella ohadii hay các đột biến chịu được ánh sáng mạnh, mà một dòng dại của loài vi tảo mô hình phổ biến cũng có khả năng này.

Từ khóa

#Thích ứng ánh sáng cực mạnh #Chlamydomonas reinhardtii #quang ức chế #PSII #tỷ lệ carotenoid-chlorophyll #<jats:sup>1</jats:sup>O<jats:sub>2</jats:sub>

Tài liệu tham khảo

Allen JF (1992) Protein phosphorylation in photosynthesis. Biochim Biophys Acta 1098:275–335. https://doi.org/10.1016/S0005-2728(09)91014-3

Allorent G, Ruytaro T, Roach T et al (2013) A dual-strategy to cope with high light in Chlmaydomonas reinhardtii. Plant Cell 25:545–557. https://doi.org/10.1105/tpc.112.108274

Belgio E, Trsková E, Kotabová E et al (2018) High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 135:263–274. https://doi.org/10.1007/s11120-017-0385-8

Bonente G, Ballotari M, Truong TB et al (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9:e1000577. https://doi.org/10.1371/journal.pbio.1000577

Bonente G, Pippa S, Castellano S et al (2012) Acclimation of C. reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847. https://doi.org/10.1074/jbc.M111.304279

Campbell DA, Tyystjärvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265. https://doi.org/10.1016/j.bbabio.2011.04.010

Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L (2012) The Arabidopsis szl1 mutant reveals a critical role of β-carotene in Photosystem I photoprotection. Plant Physiol 159:1745–1758

Chukhutsina VU, Holtzwarth AR, Croce R (2019) Time-resolved fluorescence measurements on leaves: principles and recent developments. Photosynth Res 140:355–369. https://doi.org/10.1007/s11120-018-0607-8

Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158. https://doi.org/10.1016/0005-2728(95)00143-3

Dietz KJ (2015) Efficient high light acclimation involves rapid processes at multiple mechanistic levels. J Exp Bot 66:2401–2414. https://doi.org/10.1093/jxb/eru505

Dimitrieva VA, Tyutereva EV, Voitsekhovkaja OV (2020) Singlet oxygen in plants: generation, detection and signaling roles. Int J Mol Sci 21:9. https://doi.org/10.3390/ijms21093237

Duarte-Aké F, Us-Casmas R, Cancino-Garciá VJ, De-la-Peña C (2018) Epigenetic changes and photosynthetic plasticity in response to environment. Environ Exp Bot 159:108–120. https://doi.org/10.1016/j.envexpbot.2018.12.010

Förster B, Osmond CB, Pogson BJ (2005) Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations in Chlamydomonas. Biochim Biophys Acta 1709:45–57. https://doi.org/10.1016/j.bbabio.2005.05.012

Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410. https://doi.org/10.1016/S0014-5793(02)03724-9

Fufezan C, Gross CM, Sjödin M et al (2007) Influence of the redox potential of the primary quinone acceptor on photoinhibition in photosystem II. J Biol Chem 282:12492–12502. https://doi.org/10.1074/jbc.M610951200

Girolomoni L, Cazzaniga S, Pinnola A et al (2019) LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. PNAS 116:4212–4217. https://doi.org/10.1073/pnas.1809812116

Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci 54:1665–1669. https://doi.org/10.1073/pnas.54.6.1665

Graan T, Ort DR (1986) Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim Biophys Acta 852:320–330. https://doi.org/10.1016/0005-2728(86)90238-0

Greer DH, Laing WA (1988) Photoinhibition of photosynthesis in intact kiwifruit (Actinidia delicosa) leaves: changes in susceptibility to photoinhibition and recovery during the growth season. Planta 186:418–425. https://doi.org/10.1007/BF00195323

Hakala-Yatkin M, Tyystjärvi E (2011) Inhibition of Photosystem II by the singlet oxygen sensor compounds TEMP and TEMPD. Biochim Biophys Acta 1807:243–250. https://doi.org/10.1016/j.bbabio.2010.11.014

Hakala-Yatkin M, Sarvikas P, Paturi P et al (2011) Magnetic field protects plants against high light by slowing down production of singlet oxygen. Physiol Plant 142:26–34. https://doi.org/10.1111/j.1399-3054.2011.01453.x

Havurinne V, Mattila H, Antinluoma M, Tyystjärvi E (2019) Unresolved quenching mechanism of chlorophyll fluorescence may invalidate multiple turnover saturating pulse analyses of photosynthetic electron transfer in microalgae. Physiol Plant 166:365–379. https://doi.org/10.1111/ppl.12829

Hideg É, Vass I (1995) Singlet oxygen is not produced in photosystem I under photoinhibitory conditions. Photochem Photobiol 62:949–952. https://doi.org/10.1111/j.1751-1097.1995.tb09162.x

Hoops S, Sahle S, Gauges R et al (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074. https://doi.org/10.1093/bioinformatics/btl485

Ivanov AG, Morgan RM, Gray GR et al (1998) Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett 430:288–292. https://doi.org/10.1016/S0014-5793(98)00681-4

Khorobrykh S, Tsurumaki T, Tanaka K et al (2020) Measurement of the redox state of the plastoquinone pool in cyanobacteria. FEBS Lett 594:367–375. https://doi.org/10.1002/1873-3468.13605

Kirst H, Garcia-Sedan JG, Zurbriggen A et al (2012) Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 160:2251–2260. https://doi.org/10.1104/pp.112.206672

Kojima K, Oshita M, Nanjo Y et al (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 65:936–947. https://doi.org/10.1111/j.1365-2958.2007.05836.x

Kondo T, Pinnola A, Chen WJ et al (2017) Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nat Chem 9:772–778. https://doi.org/10.1038/NCHEM.2818

Kouřil R, Wientjes E, Bultema JB et al (2013) High-light vs. low-light: effect of acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419. https://doi.org/10.1016/j.bbabio.2012.12.003

Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564. https://doi.org/10.1007/s11120-008-9349-3

Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346. https://doi.org/10.1093/jxb/erh237

Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34:2285–2306. https://doi.org/10.1093/molbev/msx166

Kruk J, Karpinski S (2006) An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis. Biochim Biophys Acta 1757:1669–1675. https://doi.org/10.1016/j.bbabio.2006.08.004

Liguori N, Roy LM, Opacic M et al (2013) Regulation of light-harvesting in the green alga Chlamydomonas reinhardtii: The C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 135:18339–18342. https://doi.org/10.1021/ja4107463

Lima-Melo Y, Alencar CTCB, Lobo AKM et al (2019) Photoinhibition of Photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Front Plant Sci 10:916. https://doi.org/10.3389/fpls.2019.00916

Nagy G, Ünnep R, Zsiros O et al (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci 111:5042–5047. https://doi.org/10.1073/pnas.1322494111

Nawrocki WJ, Liu X, Croce R (2019) Chlamydomonas reinhardtii exhibits de facto constitutive NPQ capacity in physiologically relevant conditions. Plant Physiol 182:472–479. https://doi.org/10.1104/pp.19.00658

Nishiyama Y, Yamamoto H, Allakhverdiev SI et al (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. https://doi.org/10.1093/emboj/20.20.5587

Nishiyama R, Ito M, Yamaguchi Y et al (2002) A chloroplast-resident DNA methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas maternal gametes. Proc Natl Acad Sci 99:5925–5930. https://doi.org/10.1073/pnas.082120199

Nishiyama R, Wada Y, Mibu M et al (2004) Role of a nonselective de novo DNA methyltransferase in maternal inheritance of chloroplast genes in the green alga, Chlamydomonas reinhardtii. Genetics 168:809–816. https://doi.org/10.1534/genetics.104.030775

Nishiyama Y, Allakhverdiev SI, Yamamamoto H et al (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC6803. Biochemistry 43:11321–11330. https://doi.org/10.1021/bi036178q

Öquist G, Hurry V, Huner NPA (1993) The temperature-dependence of the redox state of Q(A) and susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31:683–691

Peers G, Truong TB, Ostendorf E et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. https://doi.org/10.1038/nature08587

Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic spectroscopy. Biochim Biophys Acta 975:384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

Ramel F, Birtic S, Cuiné S et al (2012) Chemical quenching of singlet oxygen by carotenoids. Plant Physiol 158:1267–1278. https://doi.org/10.1104/pp.111.182394

Rappaport F, Guergova-Kuras M, Nixon PJ et al (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41:8518–8527. https://doi.org/10.1021/bi025725p

Roach T, Na CS (2017) LHCSR3 affects de-coupling and re-coupling of LHCII to PSII during state transitions in Chlamydomonas reinhardtii. Sci Rep 7:43145. https://doi.org/10.1038/srep43145

Samuelsson G, Lönneborg A, Rosenqvist E et al (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 4:992–995. https://doi.org/10.1104/pp.79.4.992

Sarvikas P, Hakala M, Pätsikkä E et al (2006) Action spectrum of photoinhibition in leaves of wild-type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400. https://doi.org/10.1093/pcp/pcj006

Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence OJIP. Biochim Biophys Acta 1706:250–261. https://doi.org/10.1016/j.bbabio.2004.11.006

Schierenbeck L, Ries D, Rogge K et al (2015) Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16:57. https://doi.org/10.1186/s12864-015-1232-y

Sejima T, Tagaki D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates Photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193. https://doi.org/10.1093/pcp/pcu061

Shimakawa G, Miyake C (2018) Oxidation of P700 ensures robust photosynthesis. Front Plant Sci 9:1617. https://doi.org/10.3389/fpls.2018.01617

Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64. https://doi.org/10.1111/j.1399-3054.2010.01437.x

Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci 46:83–91. https://doi.org/10.1073/pnas.46.1.83

Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and protective role of β-carotene. Plant Cell Physiol 55:1216–1223. https://doi.org/10.1093/pcp/pcu040

Tian L, Nawrocki WJ, Liu X et al (2019) pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc Natl Acad Sci 116:8320–8325. https://doi.org/10.1073/pnas.1817796116

Tibiletti T, Auroy P, Peltier G et al (2016) Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol 171:2717–2730. https://doi.org/10.1104/pp.16.00572

Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Sci 19:10–17. https://doi.org/10.1016/j.tplants.2013.09.003

Tilbrook K, Dubois M, Crocco CD et al (2016) UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell 4:966–983. https://doi.org/10.1105/tpc.15.00287

Treves H, Raanan H, Kedem I et al (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210:1229–1243. https://doi.org/10.1111/nph.13870

Tyystjärvi E (2013) Photoinhibition of photosystem II. In: Jeon K (ed) International review of cell and molecular biology. Academic Press, Elsevier Inc., pp 243–303

Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci 93:2213–2218. https://doi.org/10.1073/pnas.93.5.2213

Tyystjärvi E, Ovaska J, Karunen P, Aro E-M (1989) The nature of light-induced inhibition of Photosystem II in pumpkin (Cucurbita pepo L.) depends on temperature. Plant Physiol 91:1069–1074

Tyystjärvi E, Rantamäki S, Tyystjärvi J (2009) Connectivity of photosystem II is the physical basis of retrapping in photosynthetic thermoluminescence. Biophys J 96:3735–3743. https://doi.org/10.1016/j.bpj.2009.02.014

Umen J, Goodenough U (2001) Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev 15:2585–2597. https://doi.org/10.1101/gad.906701

Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci 111:3460–3465. https://doi.org/10.1073/pnas.1319164111

Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:1–16. https://doi.org/10.1111/j.1399-3054.2011.01454.x

Virtanen O, Valev D, Kruse O et al (2019) Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of Chlamydomonas reinhardtii. Photosynthetica 57:617–626. https://doi.org/10.32615/ps.2019.056

Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2

Wobbe L, Bass R, Kruse O (2016) Multi-level light capture control in plants and green algae. Trends Plant Sci 21:55–68. https://doi.org/10.1016/j.tplants.2015.10.004