Thích ứng của Chlamydomonas reinhardtii với cường độ ánh sáng cực mạnh
Tóm tắt
Từ khóa
#Thích ứng ánh sáng cực mạnh #Chlamydomonas reinhardtii #quang ức chế #PSII #tỷ lệ carotenoid-chlorophyll #<jats:sup>1</jats:sup>O<jats:sub>2</jats:sub>Tài liệu tham khảo
Allen JF (1992) Protein phosphorylation in photosynthesis. Biochim Biophys Acta 1098:275–335. https://doi.org/10.1016/S0005-2728(09)91014-3
Allorent G, Ruytaro T, Roach T et al (2013) A dual-strategy to cope with high light in Chlmaydomonas reinhardtii. Plant Cell 25:545–557. https://doi.org/10.1105/tpc.112.108274
Belgio E, Trsková E, Kotabová E et al (2018) High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 135:263–274. https://doi.org/10.1007/s11120-017-0385-8
Bonente G, Ballotari M, Truong TB et al (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9:e1000577. https://doi.org/10.1371/journal.pbio.1000577
Bonente G, Pippa S, Castellano S et al (2012) Acclimation of C. reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847. https://doi.org/10.1074/jbc.M111.304279
Campbell DA, Tyystjärvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265. https://doi.org/10.1016/j.bbabio.2011.04.010
Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L (2012) The Arabidopsis szl1 mutant reveals a critical role of β-carotene in Photosystem I photoprotection. Plant Physiol 159:1745–1758
Chukhutsina VU, Holtzwarth AR, Croce R (2019) Time-resolved fluorescence measurements on leaves: principles and recent developments. Photosynth Res 140:355–369. https://doi.org/10.1007/s11120-018-0607-8
Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158. https://doi.org/10.1016/0005-2728(95)00143-3
Dietz KJ (2015) Efficient high light acclimation involves rapid processes at multiple mechanistic levels. J Exp Bot 66:2401–2414. https://doi.org/10.1093/jxb/eru505
Dimitrieva VA, Tyutereva EV, Voitsekhovkaja OV (2020) Singlet oxygen in plants: generation, detection and signaling roles. Int J Mol Sci 21:9. https://doi.org/10.3390/ijms21093237
Duarte-Aké F, Us-Casmas R, Cancino-Garciá VJ, De-la-Peña C (2018) Epigenetic changes and photosynthetic plasticity in response to environment. Environ Exp Bot 159:108–120. https://doi.org/10.1016/j.envexpbot.2018.12.010
Förster B, Osmond CB, Pogson BJ (2005) Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations in Chlamydomonas. Biochim Biophys Acta 1709:45–57. https://doi.org/10.1016/j.bbabio.2005.05.012
Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410. https://doi.org/10.1016/S0014-5793(02)03724-9
Fufezan C, Gross CM, Sjödin M et al (2007) Influence of the redox potential of the primary quinone acceptor on photoinhibition in photosystem II. J Biol Chem 282:12492–12502. https://doi.org/10.1074/jbc.M610951200
Girolomoni L, Cazzaniga S, Pinnola A et al (2019) LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. PNAS 116:4212–4217. https://doi.org/10.1073/pnas.1809812116
Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci 54:1665–1669. https://doi.org/10.1073/pnas.54.6.1665
Graan T, Ort DR (1986) Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim Biophys Acta 852:320–330. https://doi.org/10.1016/0005-2728(86)90238-0
Greer DH, Laing WA (1988) Photoinhibition of photosynthesis in intact kiwifruit (Actinidia delicosa) leaves: changes in susceptibility to photoinhibition and recovery during the growth season. Planta 186:418–425. https://doi.org/10.1007/BF00195323
Hakala-Yatkin M, Tyystjärvi E (2011) Inhibition of Photosystem II by the singlet oxygen sensor compounds TEMP and TEMPD. Biochim Biophys Acta 1807:243–250. https://doi.org/10.1016/j.bbabio.2010.11.014
Hakala-Yatkin M, Sarvikas P, Paturi P et al (2011) Magnetic field protects plants against high light by slowing down production of singlet oxygen. Physiol Plant 142:26–34. https://doi.org/10.1111/j.1399-3054.2011.01453.x
Havurinne V, Mattila H, Antinluoma M, Tyystjärvi E (2019) Unresolved quenching mechanism of chlorophyll fluorescence may invalidate multiple turnover saturating pulse analyses of photosynthetic electron transfer in microalgae. Physiol Plant 166:365–379. https://doi.org/10.1111/ppl.12829
Hideg É, Vass I (1995) Singlet oxygen is not produced in photosystem I under photoinhibitory conditions. Photochem Photobiol 62:949–952. https://doi.org/10.1111/j.1751-1097.1995.tb09162.x
Hoops S, Sahle S, Gauges R et al (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074. https://doi.org/10.1093/bioinformatics/btl485
Ivanov AG, Morgan RM, Gray GR et al (1998) Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Lett 430:288–292. https://doi.org/10.1016/S0014-5793(98)00681-4
Khorobrykh S, Tsurumaki T, Tanaka K et al (2020) Measurement of the redox state of the plastoquinone pool in cyanobacteria. FEBS Lett 594:367–375. https://doi.org/10.1002/1873-3468.13605
Kirst H, Garcia-Sedan JG, Zurbriggen A et al (2012) Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 160:2251–2260. https://doi.org/10.1104/pp.112.206672
Kojima K, Oshita M, Nanjo Y et al (2007) Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Mol Microbiol 65:936–947. https://doi.org/10.1111/j.1365-2958.2007.05836.x
Kondo T, Pinnola A, Chen WJ et al (2017) Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nat Chem 9:772–778. https://doi.org/10.1038/NCHEM.2818
Kouřil R, Wientjes E, Bultema JB et al (2013) High-light vs. low-light: effect of acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419. https://doi.org/10.1016/j.bbabio.2012.12.003
Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564. https://doi.org/10.1007/s11120-008-9349-3
Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346. https://doi.org/10.1093/jxb/erh237
Kronholm I, Bassett A, Baulcombe D, Collins S (2017) Epigenetic and genetic contributions to adaptation in Chlamydomonas. Mol Biol Evol 34:2285–2306. https://doi.org/10.1093/molbev/msx166
Kruk J, Karpinski S (2006) An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis. Biochim Biophys Acta 1757:1669–1675. https://doi.org/10.1016/j.bbabio.2006.08.004
Liguori N, Roy LM, Opacic M et al (2013) Regulation of light-harvesting in the green alga Chlamydomonas reinhardtii: The C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 135:18339–18342. https://doi.org/10.1021/ja4107463
Lima-Melo Y, Alencar CTCB, Lobo AKM et al (2019) Photoinhibition of Photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Front Plant Sci 10:916. https://doi.org/10.3389/fpls.2019.00916
Nagy G, Ünnep R, Zsiros O et al (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci 111:5042–5047. https://doi.org/10.1073/pnas.1322494111
Nawrocki WJ, Liu X, Croce R (2019) Chlamydomonas reinhardtii exhibits de facto constitutive NPQ capacity in physiologically relevant conditions. Plant Physiol 182:472–479. https://doi.org/10.1104/pp.19.00658
Nishiyama Y, Yamamoto H, Allakhverdiev SI et al (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. https://doi.org/10.1093/emboj/20.20.5587
Nishiyama R, Ito M, Yamaguchi Y et al (2002) A chloroplast-resident DNA methyltransferase is responsible for hypermethylation of chloroplast genes in Chlamydomonas maternal gametes. Proc Natl Acad Sci 99:5925–5930. https://doi.org/10.1073/pnas.082120199
Nishiyama R, Wada Y, Mibu M et al (2004) Role of a nonselective de novo DNA methyltransferase in maternal inheritance of chloroplast genes in the green alga, Chlamydomonas reinhardtii. Genetics 168:809–816. https://doi.org/10.1534/genetics.104.030775
Nishiyama Y, Allakhverdiev SI, Yamamamoto H et al (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC6803. Biochemistry 43:11321–11330. https://doi.org/10.1021/bi036178q
Öquist G, Hurry V, Huner NPA (1993) The temperature-dependence of the redox state of Q(A) and susceptibility of photosynthesis to photoinhibition. Plant Physiol Biochem 31:683–691
Peers G, Truong TB, Ostendorf E et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. https://doi.org/10.1038/nature08587
Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic spectroscopy. Biochim Biophys Acta 975:384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
Ramel F, Birtic S, Cuiné S et al (2012) Chemical quenching of singlet oxygen by carotenoids. Plant Physiol 158:1267–1278. https://doi.org/10.1104/pp.111.182394
Rappaport F, Guergova-Kuras M, Nixon PJ et al (2002) Kinetics and pathways of charge recombination in Photosystem II. Biochemistry 41:8518–8527. https://doi.org/10.1021/bi025725p
Roach T, Na CS (2017) LHCSR3 affects de-coupling and re-coupling of LHCII to PSII during state transitions in Chlamydomonas reinhardtii. Sci Rep 7:43145. https://doi.org/10.1038/srep43145
Samuelsson G, Lönneborg A, Rosenqvist E et al (1985) Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol 4:992–995. https://doi.org/10.1104/pp.79.4.992
Sarvikas P, Hakala M, Pätsikkä E et al (2006) Action spectrum of photoinhibition in leaves of wild-type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47:391–400. https://doi.org/10.1093/pcp/pcj006
Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence OJIP. Biochim Biophys Acta 1706:250–261. https://doi.org/10.1016/j.bbabio.2004.11.006
Schierenbeck L, Ries D, Rogge K et al (2015) Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16:57. https://doi.org/10.1186/s12864-015-1232-y
Sejima T, Tagaki D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates Photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193. https://doi.org/10.1093/pcp/pcu061
Shimakawa G, Miyake C (2018) Oxidation of P700 ensures robust photosynthesis. Front Plant Sci 9:1617. https://doi.org/10.3389/fpls.2018.01617
Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64. https://doi.org/10.1111/j.1399-3054.2010.01437.x
Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci 46:83–91. https://doi.org/10.1073/pnas.46.1.83
Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and protective role of β-carotene. Plant Cell Physiol 55:1216–1223. https://doi.org/10.1093/pcp/pcu040
Tian L, Nawrocki WJ, Liu X et al (2019) pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc Natl Acad Sci 116:8320–8325. https://doi.org/10.1073/pnas.1817796116
Tibiletti T, Auroy P, Peltier G et al (2016) Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol 171:2717–2730. https://doi.org/10.1104/pp.16.00572
Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Sci 19:10–17. https://doi.org/10.1016/j.tplants.2013.09.003
Tilbrook K, Dubois M, Crocco CD et al (2016) UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell 4:966–983. https://doi.org/10.1105/tpc.15.00287
Treves H, Raanan H, Kedem I et al (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210:1229–1243. https://doi.org/10.1111/nph.13870
Tyystjärvi E (2013) Photoinhibition of photosystem II. In: Jeon K (ed) International review of cell and molecular biology. Academic Press, Elsevier Inc., pp 243–303
Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci 93:2213–2218. https://doi.org/10.1073/pnas.93.5.2213
Tyystjärvi E, Ovaska J, Karunen P, Aro E-M (1989) The nature of light-induced inhibition of Photosystem II in pumpkin (Cucurbita pepo L.) depends on temperature. Plant Physiol 91:1069–1074
Tyystjärvi E, Rantamäki S, Tyystjärvi J (2009) Connectivity of photosystem II is the physical basis of retrapping in photosynthetic thermoluminescence. Biophys J 96:3735–3743. https://doi.org/10.1016/j.bpj.2009.02.014
Umen J, Goodenough U (2001) Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev 15:2585–2597. https://doi.org/10.1101/gad.906701
Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci 111:3460–3465. https://doi.org/10.1073/pnas.1319164111
Vass I (2011) Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol Plant 142:1–16. https://doi.org/10.1111/j.1399-3054.2011.01454.x
Virtanen O, Valev D, Kruse O et al (2019) Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of Chlamydomonas reinhardtii. Photosynthetica 57:617–626. https://doi.org/10.32615/ps.2019.056
Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313. https://doi.org/10.1016/S0176-1617(11)81192-2