Ability of the PM3 quantum‐mechanical method to model intermolecular hydrogen bonding between neutral molecules

Journal of Computational Chemistry - Tập 14 Số 1 - Trang 89-104 - 1993
Marcus W. Jurema1, George C. Shields1
1Department of Chemistry, Lake Forest College, Lake Forest, Illinois 60045

Tóm tắt

AbstractThe PM3 semiempirical quantum‐mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02–0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol−1 suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol−1 imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high‐resolution spectroscopic observations, gas electron diffraction data, and high‐level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1–0.2 Å for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1–2 kcal mol−1. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and O predict that donor strength follows the order F > O > N and acceptor strength follows the order N > O > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F‐H‐‐‐N bond to be the strongest and the N‐H‐‐‐F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two‐center repulsive forces brought about by the parameterization of the Gaussian core–core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum‐mechanical calculations can be applied to small biologic systems. © 1993 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1021/ja00839a001

10.1021/ja00457a004

10.1021/ja00299a024

10.1002/jcc.540100208

Pilar F.L., 1990, Elementary Quantum Chemistry

Hirst D.M., 1990, A Computational Approach to Chemistry

J.J.P.Stewart QCPE 455 Department of Chemistry Indiana University Bloomington IN.

10.1002/jcc.540110414

H.S.RzepaandM.Yi J. Chem. Soc. Perkins Trans. 2 943(1990).

10.1021/ja00255a012

10.1016/0166-1280(88)80155-6

10.1016/0009-2614(88)80319-1

10.1021/j100335a006

10.1016/0166-1280(89)85149-8

10.1002/jcc.540100204

10.1021/j100331a019

10.1021/ja00190a006

10.1016/0166-1280(88)80382-8

I.Juranic H.S.Rzepa andM.Yi J. Chem. Soc. Perkin Trans. 2 877(1990).

10.1021/ja00178a009

10.1002/jcc.540120508

10.1002/jcc.540110913

10.1002/jcc.540120308

10.1016/0166-1280(88)80158-1

H.S.RzepaandM.Yi J. Chem. Soc. Faraday Trans. 2 531(1991).

10.1002/jcc.540110703

10.1002/jcc.540130214

10.1063/1.433968

10.1063/1.433969

10.1063/1.439795

10.1063/1.453458

10.1063/1.454595

10.1016/0022-2860(89)80073-0

10.1063/1.449139

10.1063/1.458133

10.1063/1.461030

E.S.Marcos J.J.Maraver J.L.Chiara andA.Gómez‐Sánchez J. Chem. Soc. Perkin Trans. II 2059(1988).

10.1039/f29898500215

10.1039/f29898501771

10.1039/f29898501465

Buemi G., 1990, J. Chem. Soc., Faraday Trans. 2, 86, 2813, 10.1039/ft9908602813

10.1016/0166-1280(89)87075-7

10.1002/poc.610030510

10.1016/0166-1280(90)85048-R

10.1021/ja00168a018

10.1021/ja00024a001

10.1016/0166-1280(90)80010-L

10.1002/jcc.540100403

10.1002/jcc.540110302

10.1002/jcc.540120604

10.1002/jcc.540110902

10.1002/jcc.540120503

P.Camilleri C.A.Marby B.Odell H.S.Rzepa R.N.Sheppard J.J.P.Stewart andD.J.Williams J. Chem. Soc. Chem. Commun. 1772(1989).

10.1016/0166-1280(90)80066-W

10.1021/j100171a026

10.1002/jcc.540120807

Åstrand P.‐O., 1991, J. Phys. Chem., 95, 6395, 10.1021/j100169a058

10.1021/j100169a059

10.1002/jcc.540110507

10.1002/jcc.540080110

10.1063/1.450347

10.1002/jcc.540080512

10.1002/jcc.540120808

Feller D., 1990, Reviews in Computational Chemistry

Lias S.G., 1988, J. Phys. Chem. Ref. Data

D.R.Stull andH.Prophet inJANAF Thermochemical Tables National Bureau of Standards Washington DC 1971.

Pimentel G.C., 1960, The Hydrogen Bond

Schuster P., 1976, The Hydrogen Bond

10.1063/1.438628

A.Beyer A.Karpten andP.Schuster Topics Curr. Chem. 120(1984).

10.1021/j100512a009

10.1021/ed064p88

Clagne A.D.H., 1966, Spectrochim. Acta, 22, 807, 10.1016/0371-1951(66)80110-8

Clagne A.D.H., 1969, Spectrochim. Acta, 25, 593, 10.1016/0584-8539(69)80009-7

10.1021/jo01288a033

Almenningen A., 1969, Acta Chim. Scand., 23, 2849

10.1021/ja00258a001

Huggins M.L., 1922, Science, 55, 679, 10.1126/science.55.1434.679

thesis University of California 1919.

10.1021/ja01452a015

Vinogradov S.N., 1971, Hydrogen Bonding

Griffin J.E., 1986, The Hydrogen Bond: New Insights on an Old Story

10.1021/ja00005a028

10.1073/pnas.86.6.1816

10.1002/jcc.540080612

10.1002/jcc.540110102

10.1002/jcc.540120813

10.1063/1.460597

10.1063/1.452676

Schröder K.‐P., 1988, Chem. Phys., 113, 91, 10.1016/0301-0104(88)87035-6

10.1016/0022-2860(71)90008-1

Maréchal Y., 1987, Vibrational Spectra and Structure

Peterson K.I., 1985, Comparison of Ab Initio Quantum Chemistry With Experiment for Small Molecules

Novick S.E., 1990, Atomic and Molecular Clusters

10.1126/science.238.4834.1670

10.1063/1.458376

10.1063/1.460562

10.1021/j100160a017

10.1021/j100263a018

10.1063/1.450390

10.1002/jcc.540100503

10.1002/jcc.540080513

10.1016/0301-0104(88)85004-3

10.1039/cs9922100071

10.1021/ja00023a046

10.1021/ja00023a047