ATR inhibition rewires cellular signaling networks induced by replication stress

Proteomics - Tập 16 Số 3 - Trang 402-416 - 2016
Sebastian Wagner1,2,3, Hannah Oehler1, Andrea Voigt4, Denis Dalic1, Anja Freiwald4, Hubert Serve1,2,3, Petra Beli4
1Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
2German Cancer Consortium (DKTK), Heidelberg, Germany
3German cancer Research Center (DKFZ), Heidelberg, Germany
4Institute of Molecular Biology (IMB), Mainz, Germany

Tóm tắt

The slowing down or stalling of replication forks is commonly known as replication stress and arises from multiple causes such as DNA lesions, nucleotide depletion, RNA‐DNA hybrids, and oncogene activation. The ataxia telangiectasia and Rad3‐related kinase (ATR) plays an essential role in the cellular response to replication stress and inhibition of ATR has emerged as therapeutic strategy for the treatment of cancers that exhibit high levels of replication stress. However, the cellular signaling induced by replication stress and the substrate spectrum of ATR has not been systematically investigated. In this study, we employed quantitative MS‐based proteomics to define the cellular signaling after nucleotide depletion‐induced replication stress and replication fork collapse following ATR inhibition. We demonstrate that replication stress results in increased phosphorylation of a subset of proteins, many of which are involved in RNA splicing and transcription and have previously not been associated with the cellular replication stress response. Furthermore, our data reveal the ATR‐dependent phosphorylation following replication stress and discover novel putative ATR target sites on MCM6, TOPBP1, RAD51AP1, and PSMD4. We establish that ATR inhibition rewires cellular signaling networks induced by replication stress and leads to the activation of the ATM‐driven double‐strand break repair signaling.

Từ khóa


Tài liệu tham khảo

10.1038/362709a0

10.1016/j.yexcr.2014.09.019

10.1038/sj.emboj.7600369

10.1101/gad.1301205

10.1126/science.1083430

10.1016/j.dnarep.2010.09.012

10.1101/gad.1522607

10.1038/ncb2897

10.1016/j.yexcr.2014.09.030

10.1038/nrm2974

10.1016/j.celrep.2013.10.027

10.1016/j.molcel.2010.01.021

10.1016/j.cell.2013.10.043

10.1038/nsmb1313

10.1074/jbc.M806739200

10.1016/j.dnarep.2008.03.018

10.1371/journal.pgen.1002945

10.1038/nature05327

10.1016/j.cell.2011.03.044

10.1038/onc.2012.387

10.1038/nature05953

10.1017/erm.2014.10

10.1158/0008-5472.CAN-13-0110

10.1016/j.molonc.2011.07.002

10.1158/0008-5472.CAN-13-3369

10.1002/gcc.22115

10.1126/science.1257216

10.1158/1078-0432.CCR-11-1198

10.1101/gad.2053211

10.1074/jbc.M113.511337

10.1242/jcs.035105

10.1101/gad.214080.113

10.1038/nrm2900

10.1016/j.copbio.2011.11.014

10.1038/nrg3356

10.1016/j.molcel.2012.01.026

10.1126/science.1140321

10.1126/scisignal.2001034

10.1038/nrm3970

10.1074/mcp.M900616-MCP200

10.1186/gb-2011-12-8-r78

10.1038/nchembio.573

10.1074/mcp.M200025-MCP200

10.1016/j.celrep.2013.07.024

10.1038/nprot.2007.261

10.1074/mcp.M111.011015

10.1038/nmeth1060

10.1038/nbt.1511

10.1073/pnas.0707579104

10.1021/pr101065j

10.1016/j.cell.2006.09.026

10.1038/nmeth1019

10.1093/nar/gks1262

10.1093/nar/gks1094

10.1038/nmeth.2212

10.1038/nrc3916

10.1016/j.pharmthera.2014.12.001

10.4161/cc.10.1.14351

10.1016/j.bbagen.2012.08.024

10.1093/nar/25.24.4946

10.1016/j.molcel.2007.08.027

10.1016/j.molcel.2007.08.025

10.1016/j.mrfmmm.2006.06.016

10.1016/j.dnarep.2014.09.007

10.1083/jcb.200807137

10.4161/15384101.2014.973324

10.1074/jbc.M110.104745

10.1016/j.molcel.2005.01.008