Các tế bào gốc mỡ từ bệnh nhân bị bỏng có xu hướng tăng cường chuyển hóa oxy hóa và sản xuất loài phản ứng oxy trong quá trình tái sinh

Stem Cell Research & Therapy - Tập 12 Số 1 - 2021
David M. Burmeister1, Grace Chu Yuan Chu2, Tony Chao3, Tiffany C. Heard2, Belinda I. Gómez2, Linda E. Sousse2, Shanmugasundaram Natesan2, Robert J. Christy2
1Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
2United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
3University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA

Tóm tắt

Tóm tắt Đặt vấn đề

Bệnh nhân có tổn thương bỏng nghiêm trọng (trên 20% diện tích bề mặt cơ thể) trải qua tình trạng chuyển hóa cao, điều này làm kéo dài đáng kể thời gian lành vết thương. Các tế bào gốc lấy từ mỡ (ASCs) đã được đề xuất như một giải pháp hấp dẫn cho việc điều trị vết thương bỏng, bao gồm khả năng mở rộng tự thân của ASCs. Trong khi các tế bào mỡ dưới da thể hiện một hồ sơ chuyển hóa thay đổi sau khi bị bỏng, vẫn chưa biết liệu điều này có xảy ra với các tế bào gốc liên quan đến mô mỡ hay không.

Phương pháp

Các ASCs được tách ra từ da bỏng thải loại của các bệnh nhân bị thương nặng (BH, n = 6) và mô mỡ dưới da chưa bị bỏng của các bệnh nhân tiến hành phẫu thuật tạo hình bụng (UH, n = 6) và được phân tích ở các lần cấy ghép 2, 4 và 6. Phương pháp nhuộm dòng tế bào được sử dụng để định lượng các dấu hiệu bề mặt của ASCs (CD90, CD105 và CD73). Số lượng ti thể và sản xuất loài oxy phản ứng (ROS) được xác định với MitoTracker Green và MitoSOX Red, trong khi các xét nghiệm Tiềm năng Màng Ti thể JC-10 cũng được thực hiện. Hô hấp ti thể và quá trình glycolysis được phân tích bằng máy đo hô hấp độ phân giải cao (Máy phân tích Seahorse XFe24).

Kết quả

Không có sự khác biệt về độ tuổi giữa BH và UH (34 ± 6 và 41 ± 4 tuổi, tương ứng, P = 0.49). Trong khi các ASCs ở lần cấy ghép 2 có biểu hiện dấu hiệu ASCs thấp hơn so với các lần cấy ghép tiếp theo, không có sự khác biệt đáng kể trong biểu hiện giữa các ASCs BH và UH. Tương tự, không tìm thấy sự khác biệt về số lượng ti thể hay tiềm năng màng giữa các lần cấy ghép hoặc nhóm. Phân tích ANOVA hai chiều cho thấy ảnh hưởng đáng kể (P < 0.01) của sự cấy ghép đến sản xuất ROS ti thể, với việc tăng ROS ở ASCs BH tại các lần cấy ghép sau. Sức chứa phosphoryl hóa oxy hóa (rò rỉ và hô hấp tối đa) tăng đáng kể ở ASCs BH (P = 0.035) nhưng không ở ASCs UH. Ngược lại, quá trình glycolysis cơ bản giảm đáng kể ở ASCs BH (P = 0.011) khi cấy ghép vào các lần sau, nhưng không ở ASCs UH.

Kết luận

Như vậy, các ASCs từ những người bị bỏng có xu hướng ngày càng trở nên oxy hóa nhiều hơn và ít glycolytic hơn khi so với các ASCs từ bệnh nhân chưa bị bỏng. Sự gia tăng khả năng oxy hóa này có liên quan đến sản xuất ROS ở các lần cấy ghép sau. Mặc dù việc mở rộng tự thân của ASCs có triển vọng lớn cho việc điều trị các bệnh nhân bị bỏng với nguồn tế bào donor hạn chế, những hệ quả tiêu cực tiềm ẩn khi sử dụng chúng cần được nghiên cứu thêm.

Từ khóa


Tài liệu tham khảo

Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(1):243. https://doi.org/10.1186/s13054-015-0961-2.

Hart DW, Wolf SE, Chinkes DL, Beauford RB, Mlcak RP, Heggers JP, Wolfe RR, Herndon DN. Effects of early excision and aggressive enteral feeding on hypermetabolism, catabolism, and sepsis after severe burn. J Trauma-Injury Infect Crit Care. 2003;54(4):755–61. https://doi.org/10.1097/01.TA.0000060260.61478.A7.

Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13(6):R183.

Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta-Mol Basis Dis. 2017;1863(10):2633–44. https://doi.org/10.1016/j.bbadis.2017.02.019.

Burmeister DM, McIntyre MK, Baker BA, Rizzo JA, Brown A, Natesan S, et al. Impact of isolated burns on major organs: a large animal model characterized. Shock. 2016;46(3):137–47. https://doi.org/10.1097/SHK.0000000000000662.

Rittenhouse BA, Rizzo JA, Shields BA, Rowan MP, Aden JK, Salinas J, Fenrich CA, Shingleton SK, Serio-Melvin M, Burmeister DM, Cancio LC. Predicting wound healing rates and survival with the use of automated serial evaluations of burn wounds. Burns. 2019;45(1):48–53. https://doi.org/10.1016/j.burns.2018.10.018.

Holmes JH IV, Molnar JA, Carter JE, Hwang J, Cairns BA, King BT, et al. A comparative study of the ReCell® device and autologous split-thickness meshed skin graft in the treatment of acute burn injuries. J Burn Care Res. 2018;39(5):694–702. https://doi.org/10.1093/jbcr/iry029.

Cheng JZ, Farrokhi A, Ghahary A, Jalili RB. Therapeutic use of stem cells in treatment of burn injuries. J Burn Care Res. 2018;39(2):175–82. https://doi.org/10.1097/BCR.0000000000000571.

McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, Kloster A, di Halvorsen Y, Ting JP, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24(5):1246–53. https://doi.org/10.1634/stemcells.2005-0235.

Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005;129(1):118–29. https://doi.org/10.1111/j.1365-2141.2005.05409.x.

Gentile P, Sterodimas A. Adipose stem cells (ASCs) and stromal vascular fraction (SVF) as a potential therapy in combating (COVID-19)-disease. Aging Dis. 2020;11(3):465–9. https://doi.org/10.14336/AD.2020.0422.

Suga H, Glotzbach JP, Sorkin M, Longaker MT, Gurtner GC. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Ann Plast Surg. 2014;72(2):234–41. https://doi.org/10.1097/SAP.0b013e318264fd6a.

Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14. https://doi.org/10.1080/14653240310004539.

Natesan S, Wrice NL, Baer DG, Christy RJ. Debrided skin as a source of autologous stem cells for wound repair. Stem Cells. 2011;29(8):1219–30. https://doi.org/10.1002/stem.677.

Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20(2):205–16. https://doi.org/10.3727/096368910X520065.

Edwards N, Feliers D, Zhao Q, Stone R, Christy R, Cheng X. An electrochemically deposited collagen wound matrix combined with adipose-derived stem cells improves cutaneous wound healing in a mouse model of type 2 diabetes. J Biomater Appl. 2018;33(4):553–65. https://doi.org/10.1177/0885328218803754.

van der Veen VC, Vlig M, van Milligen FJ, de Vries SI, Middelkoop E, Ulrich MMW. Stem cells in burn eschar. Cell Transplant. 2012;21(5):933–42. https://doi.org/10.3727/096368911X600993.

Loder S, Peterson JR, Agarwal S, Eboda O, Brownley C, DeLaRosa S, Ranganathan K, Cederna P, Wang SC, Levi B. Wound healing after thermal injury is improved by fat and adipose-derived stem cell isografts. J Burn Care Res. 2015;36(1):70–6. https://doi.org/10.1097/BCR.0000000000000160.

Burmeister DM, Stone R II, Wrice N, Laborde A, Becerra SC, Natesan S, Christy RJ. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns. Stem Cells Transl Med. 2018;7(4):360–72. https://doi.org/10.1002/sctm.17-0160.

Chan RK, Zamora DO, Wrice NL, Baer DG, Renz EM, Christy RJ, et al. Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cells Int. 2012;2012:841203. https://doi.org/10.1155/2012/841203.

Mangum LH, Natesan S, Stone R 2nd, Wrice NL, Larson DA, Florell KF, et al. Tissue source and cell expansion condition influence phenotypic changes of adipose-derived stem cells. Stem Cells Int. 2017;2017:7108458.

Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–27. https://doi.org/10.1016/j.cmet.2015.06.022.

Patsouris D, Qi P, Abdullahi A, Stanojcic M, Chen P, Parousis A, Amini-Nik S, Jeschke MG. Burn induces browning of the subcutaneous white adipose tissue in mice and humans. Cell Rep. 2015;13(8):1538–44. https://doi.org/10.1016/j.celrep.2015.10.028.

Auger C, Knuth CM, Abdullahi A, Samadi O, Parousis A, Jeschke MG. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol Metab. 2019;29:12–23. https://doi.org/10.1016/j.molmet.2019.08.011.

Auger C, Sivayoganathan T, Abdullahi A, Parousis A, Pang BW, Jeschke MG. Metformin adapts its cellular effects to bioenergetic status in a model of metabolic dysfunction. Sci Rep. 2018;8(1):5646. https://doi.org/10.1038/s41598-018-24017-7.

Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123(1):215–23. https://doi.org/10.1172/JCI62308.

Baer PC, Kuçi S, Krause M, Kuçi Z, Zielen S, Geiger H, Bader P, Schubert R. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev. 2013;22(2):330–9. https://doi.org/10.1089/scd.2012.0346.

Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8. https://doi.org/10.1016/j.jcyt.2013.02.006.

Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85. https://doi.org/10.1634/stemcells.2005-0234.

Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP, Zachar V. Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther. 2016;7(1):177. https://doi.org/10.1186/s13287-016-0435-8.

Vinaik R, Barayan D, Abdullahi A, Jeschke MG. NLRP3 inflammasome mediates white adipose tissue browning after burn. Am J Physiol Endocrinol Metab. 2019;317(5):E751–E9. https://doi.org/10.1152/ajpendo.00180.2019.

Abdullahi A, Auger C, Stanojcic M, Patsouris D, Parousis A, Epelman S, Jeschke MG. Alternatively activated macrophages drive browning of white adipose tissue in burns. Ann Surg. 2019;269(3):554–63. https://doi.org/10.1097/SLA.0000000000002465.

Jeschke MG, Mlcak RP, Finnerty CC, Norbury WB, Gauglitz GG, Kulp GA, Herndon DN. Burn size determines the inflammatory and hypermetabolic response. Crit Care. 2007;11(4):R90. https://doi.org/10.1186/cc6102.

Chao T, Gomez BI, Heard TC, Dubick MA, Burmeister DM. Increased oxidative phosphorylation in lymphocytes does not atone for decreased cell numbers after burn injury. Innate Immun. 2020;26(5):403-12. https://doi.org/10.1177/1753425918805544.

Nguyen TT, Cox CS, Traber DL, Gasser H, Redl H, Schlag G, Herndon DN. Free radical activity and loss of plasma antioxidants, vitamin E, and sulfhydryl groups in patients with burns: the 1993 Moyer Award. J Burn Care Rehabil. 1993;14(6):602–9. https://doi.org/10.1097/00004630-199311000-00004.

Prasai A, El Ayadi A, Mifflin RC, Wetzel MD, Andersen CR, Redl H, et al. Characterization of adipose-derived stem cells following burn injury. Stem Cell Rev Rep. 2017;13(6):781–92. https://doi.org/10.1007/s12015-017-9721-9.

Giudice G, Filoni A, Maggio G, Bonamonte D, Maruccia M, Nacchiero E, Ribatti D, Annese T, Vestita M. Use of the stromal vascular fraction in intermediate-deep acute burns: a case with its own control. J Burn Care Res. 2018;39(5):846–9. https://doi.org/10.1093/jbcr/irx017.

Cervelli V, Bocchini I, Di Pasquali C, De Angelis B, Cervelli G, Curcio CB, et al. P.R.L. platelet rich lipotransfert: our experience and current state of art in the combined use of fat and PRP. Biomed Res Int. 2013;2013:434191.

Gentile P, Casella D, Palma E, Calabrese C. Engineered fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: clinical, histological and instrumental evaluation in breast reconstruction. J Clin Med. 2019;8(4):504.

Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M, et al. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25(1):267–72. https://doi.org/10.1097/01.scs.0000436746.21031.ba.

Gentile P, Garcovich S. Systematic review: adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects. Int J Mol Sci. 2021;22(4):1538.

Gentile P, Sterodimas A, Pizzicannella J, Dionisi L, De Fazio D, Calabrese C, et al. Systematic review: allogenic use of stromal vascular fraction (SVF) and decellularized extracellular matrices (ECM) as advanced therapy medicinal products (ATMP) in tissue regeneration. Int J Mol Sci. 2020;21(14):4982.

Scioli MG, Bielli A, Gentile P, Cervelli V, Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J Tissue Eng Regen Med. 2017;11(8):2398–410. https://doi.org/10.1002/term.2139.

Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the different preparation methods to obtain human adipose-derived stromal vascular fraction cells (AD-SVFs) and human adipose-derived mesenchymal stem cells (AD-MSCs): enzymatic digestion versus mechanical centrifugation. Int J Mol Sci. 2019;20(21):5471.

Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Comparing different nanofat procedures on scars: role of the stromal vascular fraction and its clinical implications. Regen Med. 2017;12(8):939–52. https://doi.org/10.2217/rme-2017-0076.

Piccolo NS, Piccolo MS, de Paula PN, de Paula PP, de Paula PN, Daher RP, et al. Fat grafting for treatment of facial burns and burn scars. Clin Plast Surg. 2020;47(1):119–30. https://doi.org/10.1016/j.cps.2019.08.015.

Gentile P, Garcovich S. Concise review: adipose-derived stem cells (ASCs) and adipocyte-secreted exosomal microRNA (A-SE-miR) modulate cancer growth and promote wound repair. J Clin Med. 2019;8(6):855.

Zhang Y, Han F, Gu L, Ji P, Yang X, Liu M, Tao K, Hu D. Adipose mesenchymal stem cell exosomes promote wound healing through accelerated keratinocyte migration and proliferation by activating the AKT/HIF-1α axis. J Mol Histol. 2020;51(4):375–83. https://doi.org/10.1007/s10735-020-09887-4.

Ferng AS, Marsh KM, Fleming JM, Conway RF, Schipper D, Bajaj N, Connell AM, Pilikian T, Johnson K, Runyan R, Black SM, Szivek JA, Khalpey Z. Adipose-derived human stem/stromal cells: comparative organ specific mitochondrial bioenergy profiles. Springerplus. 2016;5(1):2057. https://doi.org/10.1186/s40064-016-3712-1.

Perez LM, Bernal A, de Lucas B, San Martin N, Mastrangelo A, Garcia A, et al. Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. Plos One. 2015;10(4):e0123397. https://doi.org/10.1371/journal.pone.0123397.

Feng Y, Wang Y, Wang P, Huang Y, Wang F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem. 2018;49(1):190–205. https://doi.org/10.1159/000492853.

Rice TC, Armocida SM, Kuethe JW, Midura EF, Jain A, Hildeman DA, Healy DP, Gulbins E, Caldwell CC. Burn injury influences the T cell homeostasis in a butyrate-acid sphingomyelinase dependent manner. Cell Immunol. 2017;313:25–31. https://doi.org/10.1016/j.cellimm.2016.12.004.

Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med. 1987;317(7):403–8. https://doi.org/10.1056/NEJM198708133170702.

Porter C, Herndon DN, Børsheim E, Bhattarai N, Chao T, Reidy PT, Rasmussen BB, Andersen CR, Suman OE, Sidossis LS. Long-term skeletal muscle mitochondrial dysfunction is associated with hypermetabolism in severely burned children. J Burn Care Res. 2016;37(1):53–63. https://doi.org/10.1097/BCR.0000000000000308.

Porter C, Herndon DN, Sidossis LS, Børsheim E. The impact of severe burns on skeletal muscle mitochondrial function. Burns. 2013;39(6):1039–47. https://doi.org/10.1016/j.burns.2013.03.018.

Sriram S, Yuan C, Chakraborty S, Tay W, Park M, Shabbir A, Toh SA, Han W, Sugii S. Oxidative stress mediates depot-specific functional differences of human adipose-derived stem cells. Stem Cell Res Ther. 2019;10(1):141. https://doi.org/10.1186/s13287-019-1240-y.