AN EXPERIMENTALLY VALIDATED LOW ORDER MODEL OF THE THERMAL RESPONSE OF DOUBLE-WALL EFFUSION COOLING SYSTEMS FOR HP TURBINE BLADES

Alexander V. Murray1, Peter Ireland2, Eduardo Romero3
1Department of Engineering Science, Parks Road Oxford, Oxfordshire OX1 3PJ United Kingdom
2Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
3Turbines Design Engineering PO BOX 3, Gipsy Patch Lane, Filton, Patchway Bristol, BS34 7QE United Kingdom

Tóm tắt

Abstract

Transpiration cooling represents the pinnacle of turbine cooling and is characterised by an intrinsic porosity achieving high internal convective cooling, and full coverage film cooling. The quasi-transpiration, double-wall effusion system attempts to replicate the cooling effect of transpiration cooling. The system is characterised by a large wetted area providing high internal convective cooling performance, with a highly porous external wall allowing the formation of a protective cooling film. This paper presents a low-order thermal model of a double-wall system designed to rapidly ascertain cooling performance based solely on the geometry, thermal conductivity, and approximate surface heat transfer coefficients. Initially validation uses experimental data with heat transfer coefficients for the low order model obtained from fully conjugate CFD simulations. A more controlled CFD study is then undertaken with both fully conjugate and fluid only simulations performed on several double-wall geometries to ascertain both overall and film effectiveness data. Data from these simulations are used as inputs to the low order thermal model and the results compared. The low order model successfully captures both the trends and absolute cooling effectiveness achieved by the various double-wall geometries. The model therefore provides a powerful tool whereby the cooling performance of double-wall geometries can be near instantaneously predicted during the initial design stage, potentially allowing geometry optimisation to rapidly occur prior to more in-depth, costly and time-consuming analyses. This benefit is demonstrated via the implementation of the model with input boundary conditions obtained using empirical correlations.

Từ khóa


Tài liệu tham khảo