AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish,<i>Carassius auratus</i>

Journal of Experimental Biology - Tập 211 Số 19 - Trang 3111-3122 - 2008
Lindsay Jibb1, Jeffrey G. Richards1
1Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4

Tóm tắt

SUMMARYCell survival during hypoxia exposure requires a metabolic reorganization to decrease ATP demands to match the reduced capacity for ATP production. We investigated whether AMP-activated protein kinase (AMPK) activity responds to 12 h exposure to severe hypoxia (∼0.3 mg O2l–1) in the anoxia-tolerant goldfish (Carassius auratus). Hypoxia exposure in goldfish was characterized by a strong activation of creatine phosphate hydrolysis and glycolysis in liver and muscle. AMPK activity increased by ∼5.5-fold in goldfish liver within 0.5 h hypoxia exposure and this increase in activity was temporally associated with an 11-fold increase in [AMPfree]/[ATP]. No changes in total AMPK protein amount were observed, suggesting that the changes in AMPK activity are due to post-translational phosphorylation of the protein. Hypoxia exposure had no effect on the expression of two identified AMPKα-subunit isoforms and caused an ∼50% decrease in the mRNA levels of AMPK β-subunit isoform. Changes in AMPK activity in the liver were associated with an increase in percentage phosphorylation of a well-characterized target of AMPK, eukaryotic elongation factor-2 (eEF2), and decreases in protein synthesis rates measured in liver cell-free extracts. No activation of AMPK was observed in muscle, brain, heart or gill during the 12 h hypoxia exposure suggesting a tissue-specific regulation of AMPK possibly related to a lack of change in cellular [AMPfree]/[ATP] as observed in muscle.

Từ khóa


Tài liệu tham khảo

Bartrons, M., Ortega, E., Obach, M., Calvo, M. N.,Navarro-Sabate, A. and Bartrons, R. (2004). Activation of AMP-dependent protein kinase by hypoxia and hypothermia in the liver of frog Rana perezi.Cryobiology49,190-194.

Beauloye, C., Marsin, A. S., Bertrand, L., Krause, U., Hardie,D. G., Vanoverschelde, J. L. and Hue, L. (2001). Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides. FEBS Lett.505,348-352.

Bergmeyer, H. U. (1983). Methods of Enzymatic Analysis. New York: Academic Press.

Bickler, P. and Buck, L. T. (2007). Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol.69,145-170.

Blaxhall, P. C. and Daisley, K. W. (1973). Routine haematological methods for use with fish blood. J. Fish Biol.5,771-781.

Booth, J. H. (1979). The effects of oxygen supply, epinephrine, and acetylcholine on the distribution of blood flow in trout gills. J. Exp. Biol.83, 31-39.

Boutilier, R. G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol.204,3171-3181.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72,248-254.

Brooks, S. P. and Storey, K. B. (1989). Influence of hormones, second messengers and pH on the expresion of metabolic responses to anoxia in a marine whelk. J. Exp. Biol.145, 31-43.

Browne, G. J., Finn, S. G. and Proud, C. G.(2004). Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem.279,12220-12231.

Buck, L. T., Hochachka, P. W., Schon, A. and Gnaiger, E.(1993). Microcalorimetric measurement of reversible metabolic suppression induced by anoxia in isolated hepatocytes. Am. J. Physiol.265,R1014-R1019.

Busk, M. and Boutilier, R. G. (2005). Metabolic arrest and its regulation in anoxic eel hepatocytes. Physiol. Biochem. Zool.78,926-936.

Carattino, M. D., Edinger, R. S., Grieser, H. J., Wise, R.,Neumann, D., Schlattner, U., Johnson, J. P., Kleyman, T. R. and Hallows, K. R. (2005). Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J. Biol. Chem.280,17608-17616.

Carling, D. (2004). The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem. Sci.29,18-24.

Chomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques15, 532-534;536-537.

Corton, J. M., Gillespie, J. G., Hawley, S. A. and Hardie, D. G. (1995). 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?Eur. J. Biochem.229,558-565.

Dalla Via, J., van den Thillart, G., Cattani, O. and de Zwaan,A. (1994). Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Mar. Ecol. Prog. Ser.111, 17-27.

Davies, S. P., Carling, D. and Hardie, D. G.(1989). Tissue distribution of the AMP-activated protein kinase,and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur. J. Biochem.186,123-128.

Dorovkov, M. V., Pavur, K. S., Petrov, A. N. and Ryazanov, A. G. (2002). Regulation of elongation factor-2 kinase by pH. Biochemistry41,13444-13450.

Dunn, J. F. and Hochachka, P. W. (1986). Metabolic responses of trout (Salmo gairdneri) to acute environmnetal hypoxia. J. Exp. Biol.123,229-242.

Gamperl, A. K., Axelsson, M. and Farrell, A. P.(1995). Effects of swimming and environmental hypoxia on coronary blood flow in rainbow trout. Am. J. Physiol.269,R1258-R1266.

Golding, E. M., Teague, W. E., Jr and Dobson, G. P.(1995). Adjustment of K' to varying pH and pmol l–1g for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment. J. Exp. Biol.198,1775-1782.

Hardewig, I., Van Dijk, P. L. and Portner, H. O.(1998). High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts. Am. J. Physiol.274,R1789-R1796.

Hardie, D. G. (2007). Balancing cellular energy. Science315,1671-1672.

Hardie, D. G. and Pan, D. A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans.30,1064-1070.

Hardie, D. G., Hawley, S. A. and Scott, J. W.(2006). AMP-activated protein kinase-development of the energy sensor concept. J. Physiol.574, 7-15.

Hochachka, P. W., Buck, L. T., Doll, C. J. and Land, S. C.(1996). Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. USA93,9493-9498.

Holmes, B. F., Kurth-Kraczek, E. J. and Winder, W. W.(1999). Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol.87,1990-1995.

Horman, S., Browne, G., Krause, U., Patel, J., Vertommen, D.,Bertrand, L., Lavoinne, A., Hue, L., Proud, C. and Rider, M.(2002). Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr. Biol.12,1419-1423.

Kammermeier, H. (1987). High energy phosphate of the myocardium: concentration versus free energy change. Basic Res. Cardiol.82Suppl. 2, 31-36.

Kammermeier, H. (1993). Efficiency of energy conversion from metabolic substrates to ATP and mechanical and chemiosmotic energy. Basic Res. Cardiol.88, 15-20.

Krumschnabel, G., Biasi, C., Schwarzbaum, P. J. and Wieser,W. (1996). Membrane-metabolic coupling and ion homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. Am. J. Physiol.270,R614-R620.

Krumschnabel, G., Schwarzbaum, P. J., Biasi, C., Dorigatti, M. and Wieser, W. (1997). Effects of energy limitation on Ca2+ and K+ homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. Am. J. Physiol.273,R307-R316.

Kudo, N., Barr, A. J., Barr, R. L., Desai, S. and Lopaschuk, G. D. (1995). High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem.270,17513-17520.

Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J. and Winder, W. W. (1999). 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes48,1667-1671.

Laemmli, U. K. (1970). Cleavage of structural protein during assembly of the head bacteriophage T4. Nature227,680-685.

Land, S. C., Buck, L. T. and Hochachka, P. W.(1993). Response of protein synthesis to anoxia and recovery in anoxia-tolerant hepatocytes. Am. J. Physiol.265,R41-R48.

Lewis, J. M., Costa, I., Val, A. L., Almeida-Val, V. M.,Gamperl, A. K. and Driedzic, W. R. (2007). Responses to hypoxia and recovery: repayment of oxygen debt is not associated with compensatory protein synthesis in the Amazonian cichlid, Astronotus ocellatus.J. Exp. Biol.210,1935-1943.

Marsin, A. S., Bertrand, L., Rider, M. H., Deprez, J., Beauloye,C., Vincent, M. F., Van den Berghe, G., Carling, D. and Hue, L.(2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol.10,1247-1255.

Martinez, M. L., Landry, C., Boehm, R., Manning, S., Cheek, A. O. and Rees, B. B. (2006). Effects of long-term hypoxia on enzymes of carbohydrate metabolism in the Gulf killifish, Fundulus grandis.J. Exp. Biol.209,3851-3861.

McCullough, L. D., Zeng, Z., Li, H., Landree, L. E., McFadden,J. and Ronnett, G. V. (2005). Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J. Biol. Chem.280,20493-20502.

Mu, J., Brozinick, J. T., Jr, Valladares, O., Bucan, M. and Birnbaum, M. J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell7,1085-1094.

Neurath, K. M., Keough, M. P., Mikkelsen, T. and Claffey, K. P. (2006). AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia53,733-743.

Nielsen, J. N., Wojtaszewski, J. F., Haller, R. G., Hardie, D. G., Kemp, B. E., Richter, E. A. and Vissing, J. (2002). Role of 5′AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle's disease. J. Physiol.541,979-989.

Nivarthi, R. N., Grant, G. J., Turndorf, H. and Bansinath,M. (1997). Effect of intrathecally administered local anesthetics on protein phosphorylation in the spinal cord. Bichem. Pharmacol.53,979-986.

Pörtner, H., Boutlier, R., Tang, Y. and Toews, D.(1991). The use of fluoride and nitriloacetic acid in tissue acid-base physiology. II. Intracellular pH. Respir. Physiol.81,255-275.

Pörtner, H. O., Finke, E. and Lee, P. G.(1996). Metabolic and energy correlates of intracellular pH in progressive fatigue of squid (L. brevis) mantle muscle. Am. J. Physiol.271,R1403-R1414.

Reipschläger, A. and Pörtner, H.(1996). Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus.J. Exp. Biol.199,1801-1807.

Richards, J. G., Semple, J. W., Bystriansky, J. S. and Schulte,P. M. (2003). Na+/K+-ATPaseα-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol.206,4475-4486.

Richards, J. G., Wang, Y. S., Brauner, C. J., Gonzalez, R. J.,Patrick, M. L., Schulte, P. M., Choppari-Gomes, A. R., Almeida-Val, V. M. and Val, A. L. (2007). Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. J. Comp. Physiol. B177,361-374.

Rider, M. H., Hussain, N., Horman, S., Dilworth, S. M. and Storey, K. B. (2006). Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica.Cryobiology53,297-309.

Sakamoto, K., McCarthy, A., Smith, D., Green, K. A., Grahame Hardie, D., Ashworth, A. and Alessi, D. R. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J.24,1810-1820.

Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. and Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J.403,139-148.

Scott, J. W., Hawley, S. A., Green, K. A., Anis, M., Stewart,G., Scullion, G. A., Norman, D. G. and Hardie, D. G. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest.113,274-284.

Smith, R. W., Houlihan, D. F., Nilsson, G. E. and Brechin, J. G. (1996). Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am. J. Physiol.271,R897-R904.

Soengas, J. L. and Aldegunde, M. (2002). Energy metabolism of fish brain. Comp. Biochem. Physiol., B131,271-296.

Teague, W. E., Jr, Golding, E. M. and Dobson, G. P.(1996). Adjustment of K' for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria to varying temperature and ionic strength. J. Exp. Biol.199,509-512.

Todgham, A. E., Schulte, P. M. and Iwama, G. K.(2005). Cross-tolerance in the tidepool sculpin: the role of heat shock proteins. Physiol. Biochem. Zool.78,133-144.

van den Thillart, G., Kesbeke, F. and Waarde, A. V.(1980). Anaerobic energy metabolism of goldfish, Carassius auratus (L): influence of hypoxia and anoxia on phosphorylated compounds and glycogen. J. Comp. Physiol.136, 45-52.

van Ginneken, V., van den Thillart, G., Addink, A. and Erkelens,C. (1995). Fish muscle energy metabolism measured during hypoxia and recovery: an in vivo 31P-NMR study. Am. J. Physiol.268,R1178-R1187.

Van Waarde, A., Van den Thillart, G., Erkelens, C., Addink, A. and Lugtenburg, J. (1990). Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. An in vivo31P NMR study. J. Biol. Chem.265,914-923.

Van Waversveld, J., Addink, A. D. F. and van den Thillart,G. (1989). Simuultaneous direct and indriect calorimetry on normoxic and anoxic goldfish. J. Exp. Biol.142,325-335.

Wang, Y., Heigenhauser, G. J. F. and Wood, C. M.(1994). Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid,ammonia, fluid volume and electrolyte metabolism. J. Exp. Biol.195,227-258.

Wang, Y., Heigenhauser, G. J. and Wood, C. M.(1996). Lactate and metabolic H+ transport and distribution after exercise in rainbow trout white muscle. Am. J. Physiol.271,R1239-R1250.

Witters, L. A., Kemp, B. E. and Means, A. R.(2006). Chutes and ladders: the search for protein kinases that act on AMPK. Trends Biochem. Sci.31, 13-16.

Zhou, B. S., Wu, R. S. S., Randall, D. J., Lam, P. K. S., Ip, Y. K. and Chew, S. F. (2000). Metabolic adjustments in the common carp during prolonged hypoxia. J. Fish. Biol.57,1160-1171.