AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes

American Journal of Physiology - Endocrinology and Metabolism - Tập 277 Số 1 - Trang E1-E10 - 1999
W. W. Winder1, D. Grahame Hardie2
1Department of Zoology, Brigham Young University, Provo, Utah 84602; and
2Department of Biochemistry, The University, Dundee DD1 5EH, Scotland, United Kingdom

Tóm tắt

Adenosine 5′-monophosphate-activated protein kinase (AMPK) now appears to be a metabolic master switch, phosphorylating key target proteins that control flux through metabolic pathways of hepatic ketogenesis, cholesterol synthesis, lipogenesis, and triglyceride synthesis, adipocyte lipolysis, and skeletal muscle fatty acid oxidation. Recent evidence also implicates AMPK as being responsible for mediating the stimulation of glucose uptake induced by muscle contraction. In addition, the secretion of insulin by insulin secreting (INS-1) cells in culture is modulated by AMPK activation. The net effect of AMPK activation is stimulation of hepatic fatty acid oxidation and ketogenesis, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipolysis and lipogenesis, stimulation of skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulation of insulin secretion by pancreatic β-cells. In skeletal muscle, AMPK is activated by contraction. Type 2 diabetes mellitus is likely to be a disease of numerous etiologies. However, defects or disuse (due to a sedentary lifestyle) of the AMPK signaling system would be predicted to result in many of the metabolic perturbations observed in Type 2 diabetes mellitus. Increased recruitment of the AMPK signaling system, either by exercise or pharmaceutical activators, may be effective in correcting insulin resistance in patients with forms of impaired glucose tolerance and Type 2 diabetes resulting from defects in the insulin signaling cascade.

Từ khóa


Tài liệu tham khảo

Akkan A. G., 1994, Diabetes Res., 25, 13

10.1042/bj3340233

10.2337/diacare.21.1.S40

10.2337/diacare.21.1.S5

10.1074/jbc.273.26.16146

Bergeron R., 1999, Am. J. Physiol., 276, E938

10.1016/0014-5793(94)01247-4

Bonen A., 1994, Am. J. Physiol., 266, E1

10.1111/j.1432-1033.1989.tb15186.x

10.1152/jappl.1999.86.2.669

10.1111/j.1432-1033.1996.0800p.x

Corkey B. E., 1989, J. Biol. Chem., 264, 21608, 10.1016/S0021-9258(20)88227-1

10.1016/S0960-9822(00)00070-1

10.1111/j.1432-1033.1995.tb20498.x

10.1016/0014-5793(95)00172-6

10.1111/j.1432-1033.1992.tb16591.x

10.1016/0014-5793(95)01368-7

10.2337/diab.36.4.434

10.2337/diabetes.47.10.1613

10.1074/jbc.271.30.17798

10.1042/bj2200739

10.1042/bj2410183

10.1007/s001250050653

Etgen G. J., 1997, Am. J. Physiol., 272, E864

10.1210/edrv.19.4.0336

10.1074/jbc.273.24.14767

10.1210/edrv.19.4.0338

10.1146/annurev.med.49.1.235

10.2337/diabetes.47.11.1671

10.1111/j.1432-1033.1997.00259.x

10.1146/annurev.biochem.67.1.821

10.1074/jbc.271.44.27879

10.1074/jbc.270.45.27186

Hayashi T., 1998, Diabetes, 47, 1369

Hayashi T., 1997, Am. J. Physiol., 273, E1039

10.1096/fasebj.9.7.7737463

10.1016/0304-4165(96)00021-9

Holloszy J. O., 1996, Rev. Physiol. Biochem. Pharmacol., 128, 99, 10.1007/3-540-61343-9_8

10.1146/annurev.nu.16.070196.001005

Houmard J. A., 1991, Am. J. Physiol., 261, E437

Hutber C. A., 1997, Am. J. Physiol., 272, E262

10.2165/00007256-199724050-00004

10.1074/jbc.270.29.17513

10.1016/S0014-5793(98)00745-5

10.2337/diab.40.3.327

Louis N. A., 1992, J. Biol. Chem., 267, 2287, 10.1016/S0021-9258(18)45876-0

Malaisse W. J., 1994, Diabetes Res., 25, 25

Martin I. K., 1995, Am. J. Physiol., 269, E583

10.1093/ajcn/67.3.500S

10.1111/j.1432-1033.1997.00001.x

Merrill G. F., 1997, Am. J. Physiol., 273, E1107

10.1152/jappl.1998.85.5.1909

10.1042/bj3380783

10.2337/diab.46.12.2022

10.1093/emboj/17.6.1688

10.2337/diab.45.3.273

10.1161/01.ATV.17.11.3286

10.1152/jappl.1998.85.5.1629

10.1152/jappl.1997.83.4.1104

Ren J. M., 1994, J. Biol. Chem., 269, 14396, 10.1016/S0021-9258(17)36636-X

10.2337/diabetes.47.5.699

10.1111/j.1749-6632.1997.tb51837.x

10.1007/978-1-4899-1928-1_24

Ruderman N. B., 1999, Am. J. Physiol., 276, E1

Saha A. K., 1997, Am. J. Physiol., 272, E641

Sabina R. L., 1991, J. Biol. Chem., 260, 6107, 10.1016/S0021-9258(18)88943-8

10.1042/bj3340177

10.1042/bj3350533

10.2337/diab.46.2.169

10.1074/jbc.271.2.611

10.1016/S0014-5793(97)00569-3

10.1016/0014-5793(94)01006-4

10.1074/jbc.273.20.12443

10.2337/diacare.7.5.416

10.1111/j.1432-1033.1995.tb20686.x

10.1074/jbc.272.20.13255

10.1006/abbi.1996.9784

Vincent M. F., 1991, Adv. Exp. Med. Biol., 309, 1991

10.2165/00007256-199825010-00003

Winder W., 1998, The Biochemist, 20, 24

10.1007/978-1-4899-1928-1_22

10.1249/00003677-199800260-00007

Winder W. W., 1990, Am. J. Physiol., 259, E266

Winder W. W., 1996, Am. J. Physiol., 270, E299

10.1152/jappl.1997.82.1.219

10.1016/S0014-5793(96)01209-4

10.1074/jbc.270.5.2107

10.1016/0014-5793(96)00129-9

10.1016/S0898-6568(97)00070-3