ALKBH9C, a potential RNA m6A demethylase, regulates the response of Arabidopsis to abiotic stresses and abscisic acid

Plant, Cell and Environment - Tập 45 Số 12 - Trang 3566-3581 - 2022
Umme Amara1, Yasira Shoaib1, Hunseung Kang1
1Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea

Tóm tắt

AbstractAlthough several studies have shown that AlkB homolog (ALKBH) proteins are potential RNA demethylases (referred to as ‘erasers’), biological functions of only a few ALKBH proteins have been characterized to date. In this study, we determined the function of ALKBH9C (At4g36090) in seed germination and seedling growth of Arabidopsis thaliana in response to abiotic stress and abscisic acid (ABA). Seed germination of the alkbh9c mutant was delayed in response to salt, drought, cold and ABA. Moreover, seedling growth of the mutant was repressed under salt stress or ABA but enhanced under drought conditions. Notably, the stress‐responsive phenotypes were associated with the altered expression of several m6A‐modified transcripts related to salt, drought or ABA response. Global m6A levels were increased in the alkbh9c mutant, and ALKBH9C bound to m6A‐modified RNAs and had in vitro m6A demethylase activity, suggesting its potential role as an m6A eraser. The m6A levels in several stress‐responsive genes were increased in the alkbh9c mutant, and the stability of m6A‐modified transcripts was altered in the mutant. Collectively, our results suggest that m6A eraser ALKBH9C is crucial for seed germination and seedling growth of Arabidopsis in response to abiotic stresses or ABA via affecting the stability of stress‐responsive transcripts.

Từ khóa


Tài liệu tham khảo

10.1038/nature14281

10.1016/j.dnarep.2016.05.026

10.1016/j.celrep.2018.10.020

10.1105/tpc.17.00833

10.1104/pp.19.01156

10.1242/dev.189134

10.1073/pnas.2003733117

10.1093/nar/gkx1030

10.3389/fpls.2012.00048

10.1023/a:1015593715144

10.1186/gb-2014-15-1-r1

10.1038/nature11112

10.1105/tpc.16.00912

10.1038/ncomms12626

10.1111/tpj.12670

10.1016/j.cell.2013.10.026

10.0000/issn-2220-8879-networkbiology-2013-v3-00008

10.3389/fpls.2017.01564

10.1016/j.molp.2021.01.013

10.1038/s41556-018-0045-z

10.1111/tpj.15270

10.3389/fpls.2019.00500

10.3390/ijms21186707

10.1007/s12374-022-09351-8

10.1038/nchembio.687

10.1007/s12374-020-09239-5

10.1016/0378-1119(93)90266-6

10.1261/rna.064238.117

10.3389/fcell.2021.628415

10.14348/molcells.2016.2359

10.1111/nph.16172

10.1016/j.celrep.2020.108120

10.1046/j.1365-313X.2002.01430.x

10.3390/ijms21072462

10.1038/ncomms6630

10.1104/pp.19.00987

10.1002/iub.2276

10.1186/s12870-019-1750-x

10.1073/pnas.1703139114

10.1093/nar/gkv234

10.1038/nrm3785

10.1104/pp.19.00323

10.1371/journal.pone.0030588

10.1111/j.1365-313X.2005.02642.x

10.1007/S12374-021-09396-5

10.1016/j.cell.2017.05.003

10.1111/nph.14586

10.1186/gb-2012-13-10-175

10.1105/tpc.17.00854

10.1016/j.pbi.2021.102047

10.1016/j.devcel.2016.06.008

10.1016/j.tplants.2019.01.005

10.1038/cr.2017.15

10.1111/ppl.13505

10.1110/ps.051579205

10.1016/j.molp.2021.01.014

10.1111/j.1365-313X.2007.03318.x

10.3389/fpls.2021.712713

10.3389/fpls.2017.00161

10.1002/advs.202100209

10.1038/nature12730

10.1016/j.cell.2015.05.014

10.1186/s13059-015-0839-2

10.1105/tpc.17.00934

10.1105/tpc.8.4.617

10.1016/j.molcel.2016.01.012

10.1093/nar/gkx934

10.1093/pcp/pcm023

10.1111/pbi.13149

10.1038/s41421-018-0019-0

10.1016/j.jplph.2011.10.007

10.1038/s41587-021-00982-9

10.1371/journal.pgen.1008120

10.1016/j.molcel.2012.10.015

10.1016/j.plantsci.2020.110801

10.1105/tpc.108.058883

10.1093/pcp/pcy081

10.1186/s13059-021-02385-0

10.1186/s13059-019-1771-7