AGONOTES: A Robot Annotator for Argonaute Proteins

Lixu Jiang1, Min Yu1, Yuwei Zhou1, Zhongjie Tang1, Ning Li1, Juanjuan Kang1, Bifang He1,2, Jian Huang1
1Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
2School of Medicine, Guizhou University, Guiyang, China

Tóm tắt

The argonaute protein (Ago) exists in almost all organisms. In eukaryotes, it functions as a regulatory system for gene expression. In prokaryotes, it is a type of defense system against foreign invasive genomes. The Ago system has been engineered for gene silencing and genome editing and plays an important role in biological studies. With an increasing number of genomes and proteomes of various microbes becoming available, computational tools for identifying and annotating argonaute proteins are urgently needed. We introduce AGONOTES (Argonaute Notes). It is a web service especially designed for identifying and annotating Ago. AGONOTES uses the BLASTP similarity search algorithm to categorize all submitted proteins into three groups: prokaryotic argonaute protein (pAgo), eukaryotic argonaute protein (eAgo), and non-argonaute protein (non-Ago). Argonaute proteins can then be aligned to the corresponding standard set of Ago sequences using the multiple sequence alignment program MUSCLE. All functional domains of Ago can further be curated from the alignment results and visualized easily through Bio::Graphic modules in the BioPerl bundle. Compared with existing tools such as CD-Search and available databases such as UniProt and AGONOTES showed a much better performance on domain annotations, which is fundamental in studying the new Ago. AGONOTES can be freely accessed at http://i.uestc.edu.cn/agonotes/. AGONOTES is a friendly tool for annotating Ago domains from a proteome or a series of protein sequences.

Tài liệu tham khảo

Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17(1):170–180. https://doi.org/10.1093/emboj/17.1.170 Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29. https://doi.org/10.1186/1745-6150-4-29 Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA 111(2):652–657. https://doi.org/10.1073/pnas.1321032111 Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA 113(15):4057–4062. https://doi.org/10.1073/pnas.1524385113 Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23(24):4727–4737. https://doi.org/10.1038/sj.emboj.7600488 Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437. https://doi.org/10.1126/science.1102514 Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21(9):743–753. https://doi.org/10.1038/nsmb.2879 Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 51(5):594–605. https://doi.org/10.1016/j.molcel.2013.08.014 Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507(7491):258–261. https://doi.org/10.1038/nature12971 Gao F, Shen XZ, Jiang F, Wu Y, Han C (2016) DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol 34(7):768–773. https://doi.org/10.1038/nbt.3547 Lee SH, Turchiano G, Ata H, Nowsheen S, Romito M, Lou Z, Ryu SM, Ekker SC, Cathomen T, Kim JS (2016) Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol 35(1):17–18. https://doi.org/10.1038/nbt.3753 Burgess S, Cheng L, Gu F, Huang J, Huang Z, Lin S, Li J, Li W, Qin W, Sun Y, Songyang Z, Wei W, Wu Q, Wang H, Wang X, Xiong JW, Xi J, Yang H, Zhou B, Zhang B (2016) Questions about NgAgo. Protein Cell 7(12):913–915. https://doi.org/10.1007/s13238-016-0343-9 Qi J, Dong Z, Shi Y, Wang X, Qin Y, Wang Y, Liu D (2016) NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish. Cell Res 26(12):1349–1352. https://doi.org/10.1038/cr.2016.134 Nguyen Q, Iritani A, Ohkita S, Vu BV, Yokoya K, Matsubara A, Ikeda KI, Suzuki N, Nakayashiki H (2018) A fungal Argonaute interferes with RNA interference. Nucleic Acids Res 46(5):2495–2508. https://doi.org/10.1093/nar/gkx1301 Chai G, Yu M, Jiang L, Duan Y, Huang J (2017) HMMCAS: a web tool for the identification and domain annotations of Cas proteins. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2017.2665542 Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic acids research 42(Database issue):D222–D230. https://doi.org/10.1093/nar/gkt1223 Chen W, Lv H, Nie F, Lin H (2019) i6 mA-Pred: Identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz015 Dao FY, Lv H, Wang F, Feng CQ, Ding H, Chen W, Lin H (2018) Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty943 He B, Chai G, Duan Y, Yan Z, Qiu L, Zhang H, Liu Z, He Q, Han K, Ru B, Guo FB, Ding H, Lin H, Wang X, Rao N, Zhou P, Huang J (2016) BDB: biopanning data bank. Nucleic Acids Res 44(D1):D1127–1132. https://doi.org/10.1093/nar/gkv1100 He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J (2018) Biopanning data bank 2018: hugging next generation phage display. Database J Biolog Databases Curation. https://doi.org/10.1093/database/bay032 He B, Kang J, Ru B, Ding H, Zhou P, Huang J (2016) SABinder: a web service for predicting streptavidin-binding peptides. Biomed Res Int 2016:9175143. https://doi.org/10.1155/2016/9175143 Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo FB, Rao N (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic acids research 40(Database issue):D271–D277. https://doi.org/10.1093/nar/gkr922 Kang J, Fang Y, Yao P, Li N, Tang Q, Huang J (2019) NeuroPP: a tool for the prediction of neuropeptide precursors based on optimal sequence composition. Interdiscip Sci 11(1):108–114. https://doi.org/10.1007/s12539-018-0287-2 Li N, Kang J, Jiang L, He B, Lin H, Huang J (2017) PSBinder: a web service for predicting polystyrene surface-binding peptides. Biomed Res Int 2017:5761517. https://doi.org/10.1155/2017/5761517 Ru B, tHoen PA, Nie F, Lin H, Guo FB, Huang J (2014) PhD7Faster: predicting clones propagating faster from the Ph.D.-7 phage display peptide library. J Bioinform Comput Biol 12(1):1450005. https://doi.org/10.1142/s021972001450005x Tang Q, Nie F, Kang J, Ding H, Zhou P, Huang J (2015) NIEluter: predicting peptides eluted from HLA class I molecules. J Immunol Methods 422:22–27. https://doi.org/10.1016/j.jim.2015.03.021 Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H (2019) iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz358 Zhang Y, Liu T, Chen L, Yang J, Yin J, Zhang Y, Yun Z, Xu H, Ning L, Guo F, Jiang Y, Lin H, Wang D, Huang Y, Huang J (2019) RIscoper: a tool for RNA–RNA interaction extraction from the literature. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz044 UniProt C (2015) UniProt: a hub for protein information. Nucleic acids research 43(Database issue):D204–D212. https://doi.org/10.1093/nar/gku989 Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864 Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203. https://doi.org/10.1093/nar/gkw1129 Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom: automated clustering of homologous domains. Brief Bioinform 3(3):246–251. https://doi.org/10.1093/bib/3.3.246 Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J (2015) Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res 43(10):5120–5129. https://doi.org/10.1093/nar/gkv415 Miyoshi T, Ito K, Murakami R, Uchiumi T (2016) Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 7:11846. https://doi.org/10.1038/ncomms11846 Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19(3):405–419. https://doi.org/10.1016/j.molcel.2005.07.011 Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346(6209):608–613. https://doi.org/10.1126/science.1258040 Faehnle CR, Elkayam E, Haase AD, Hannon GJ, Joshua-Tor L (2013) The making of a slicer: activation of human Argonaute-1. Cell Rep 3(6):1901–1909. https://doi.org/10.1016/j.celrep.2013.05.033 Jee D, Yang JS, Park SM, Farmer DT, Wen J, Chou T, Chow A, McManus MT, Kharas MG, Lai EC (2018) Dual strategies for Argonaute2-Mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol Cell 69(2):265–278. https://doi.org/10.1016/j.molcel.2017.12.027 Nakanishi K, Weinberg DE, Bartel DP, Patel DJ (2012) Structure of yeast Argonaute with guide RNA. Nature 486(7403):368–374. https://doi.org/10.1038/nature11211 Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25(6):300–302 Mount DW (2007) Using the basic local alignment search tool (BLAST). CSH protocols. https://doi.org/10.1101/pdb.top17 Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47(W1):W260–W265. https://doi.org/10.1093/nar/gkz303 Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. https://doi.org/10.1093/nar/gkn180 Wu Z, Tan S, Xu L, Gao L, Zhu H, Ma C, Liang X (2017) NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA. Antiviral Res 145:20–23. https://doi.org/10.1016/j.antiviral.2017.07.005 Wei Q, Liao J, Yu X, Wang EJ, Wang C, Luu HH, Haydon RC, Lee MJ, He TC (2016) An NgAgo tool for genome editing: did CRISPR/Cas9 just find a competitor? Genes Dis 3(3):169–170. https://doi.org/10.1016/j.gendis.2016.06.001 Khin NC, Lowe JL, Jensen LM, Burgio G (2017) No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo). PLoS One 12(6):e0178768. https://doi.org/10.1371/journal.pone.0178768 Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340