ADHD-KG: a knowledge graph of attention deficit hyperactivity disorder
Tóm tắt
Tài liệu tham khảo
Asherson P, Agnew-Blais J. Annual research review: does late-onset attention-deficit/hyperactivity disorder exist? J Child Psychol Psychiatr. 2019;60(4):333–52. https://doi.org/10.1111/jcpp.13020.
Antoniou G, Papadakis E, Baryannis G. Mental health diagnosis: a case for explainable artificial intelligence. Int J Artif Intell Tools. 2022;31(03):2241003. https://doi.org/10.1142/S0218213022410032.
Panahiazar M, Taslimitehrani V, Jadhav A, Pathak J. Empowering Personalized Medicine with Big Data and Semantic Web Technology: Promises, Challenges, and Use Cases. In: 2014 IEEE International Conference on Big Data, IEEE; 2014. p. 790–795. https://doi.org/10.1109/BigData.2014.7004307 .
Cyganiak R, Wood D, Lanthaler M, Klyne G, Carroll JJ, McBride B. Rdf 1.1 concepts and abstract syntax. W3C Recommendation. 2014;25(02):1–22.
Goodwin T, Harabagiu SM. Automatic generation of a qualified medical knowledge graph and its usage for retrieving patient cohorts from electronic medical records. In: 2013 IEEE Seventh International Conference on Semantic Computing, IEEE; 2013. p. 363–370. https://doi.org/10.1109/ICSC.2013.68 .
Ansong S, Eteffa KF, Li C, Sheng M, Zhang Y, Xing C. How to empower disease diagnosis in a medical education system using knowledge graph. In: International Conference on Web Information Systems and Applications, Springer; 2019. p. 518–523. https://doi.org/10.1007/978-3-030-30952-7_52 .
Sheng M, Hu Q, Zhang Y, Xing C, Zhang T. A data-intensive CDSS platform based on knowledge graph. In: International Conference on Health Information Science, Springer; 2018. p. 146–155. https://doi.org/10.1007/978-3-030-01078-2_13.
Zamborlini V, Hoekstra R, Da Silveira M, Pruski C, Ten Teije A, Van Harmelen F. Inferring recommendation interactions in clinical guidelines. Semant Web. 2016;7(4):421–46. https://doi.org/10.3233/SW-150212.
Huang Z, Yang J, Harmelen Fv, Hu Q. Constructing knowledge graphs of depression. In: International Conference on Health Information Science, Springer; 2017. p. 149–161. https://doi.org/10.1007/978-3-319-69182-4_16.
White J. Pubmed 2.0. Medical Reference Services Quarterly, 2020;39(4), 382–387.
Stergiopoulos S, Getz KA, Blazynski C. Evaluating the completeness of ClinicalTrials.gov. Ther Innov Regul Sci. 2019;53(3):307–17. https://doi.org/10.1177/2168479018782885.
Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucl Acids Res. 2016;44(D1):1075–9. https://doi.org/10.1093/nar/gkv1075.
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl Acids Res. 2018;46(D1):1074–82. https://doi.org/10.1093/nar/gkx1037.
Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, Rohde LA, Sonuga-Barke EJ, Tannock R, Franke B. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers. 2015;1(1):1–23. https://doi.org/10.1038/nrdp.2015.20.
Asherson P, Buitelaar J, Faraone SV, Rohde LA. Adult attention-deficit hyperactivity disorder: key conceptual issues. Lancet Psychiatr. 2016;3(6):568–78. https://doi.org/10.1016/S2215-0366(16)30032-3.
Riglin L, Leppert B, Langley K, Thapar AK, O’Donovan MC, Davey Smith G, Stergiakouli E, Tilling K, Thapar A. Investigating attention-deficit hyperactivity disorder and autism spectrum disorder traits in the general population: what happens in adult life? J Child Psychol Psychiatr. 2021;62(4):449–57. https://doi.org/10.1111/jcpp.13297.
Arnold LE, Hodgkins P, Kahle J, Madhoo M, Kewley G. Long-term outcomes of ADHD: academic achievement and performance. J Atten Disord. 2020;24(1):73–85. https://doi.org/10.1177/1087054714566076.
Adamou M, Arif M, Asherson P, Aw T-C, Bolea B, Coghill D, Guðjónsson G, Halmøy A, Hodgkins P, Müller U, et al. Occupational issues of adults with ADHD. BMC Psychiatr. 2013;13(1):1–7. https://doi.org/10.1186/1471-244X-13-59.
Dalsgaard S, Østergaard SD, Leckman JF, Mortensen PB, Pedersen MG. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. The Lancet. 2015;385(9983):2190–6. https://doi.org/10.1016/S0140-6736(14)61684-6.
Malkov YA, Yashunin DA. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Trans Pattern Anal Mach Intell. 2020;42(4):824–36. https://doi.org/10.1109/TPAMI.2018.2889473.
Boytsov L, Naidan B. Engineering efficient and effective non-metric space library. In: Brisaboa, N.R., Pedreira, O., Zezula, P. (eds.) Similarity Search and Applications - 6th International Conference, SISAP 2013, Proceedings. LNCS, vol. 8199, Springer; 2013. p. 280–293. https://doi.org/10.1007/978-3-642-41062-8_28
Omar M, Baryannis G. Semi-automated development of conceptual models from natural language text. Data Knowl Eng. 2020;127: 101796. https://doi.org/10.1016/j.datak.2020.101796.
Aronson AR, Lang F-M. An overview of metamap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17(3):229–36. https://doi.org/10.1136/jamia.2009.002733.
Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40. https://doi.org/10.1093/bioinformatics/btz682.
Neumann M, King D, Beltagy I, Ammar W. ScispaCy: Fast and robust models for biomedical natural language processing. In: Proceedings of the 18th BioNLP Workshop and Shared Task, pp. 319–327. Association for Computational Linguistics, Florence, Italy. 2019. https://doi.org/10.18653/v1/W19-5034
Li J, Cheng X, Zhao WX, Nie J-Y, Wen J-R. Helma: A large-scale hallucination evaluation benchmark for large language models. arXiv preprint arXiv:2305.11747. 2023.