Hoạt động ức chế ACE và hoạt động quét gốc tự do của các peptide sinh học thu được từ quá trình thủy phân casein sữa lạc đà bằng proteinase K

Springer Science and Business Media LLC - Tập 96 - Trang 489-499 - 2016
Mahmood Rahimi1, Seyed Mahmood Ghaffari1, Maryam Salami2, Seyed Jafar Mousavy3, Amir Niasari-Naslaji4, Raheleh Jahanbani1, Saeed Yousefinejad1, Mohammadreza Khalesi1,5, Ali Akbar Moosavi-Movahedi1,6
1Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
2Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3Department of Biology, Faculty of Basic Sciences, Imam Hussein University (IHU), Tehran, Iran
4Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
5Department of Food Science and Technology, Shiraz University, Shiraz, Iran
6Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran

Tóm tắt

Mục tiêu của nghiên cứu này là đánh giá tác động của quá trình thủy phân enzym lên toàn bộ casein của lạc đà đối với hoạt động chống oxy hóa và hoạt tính ức chế enzyme chuyển angiotensin (ACE). Casein lạc đà nguyên chất đã được thủy phân bằng proteinase K (PK) và các sản phẩm thủy phân được phân tách bằng màng siêu lọc thành ba phân đoạn. Phương pháp sắc ký lỏng hiệu năng cao đảo ngược (RP-HPLC) bán chuẩn đã được sử dụng để phân biệt hỗn hợp peptide trong các phân đoạn thẩm thấu 3 kDa. Một phân đoạn (F4) có tiềm năng hoạt động ức chế ACE (IC50 = 73 μg.mL−1) và hoạt động quét gốc tự do (IC50 = 6.8 μg.mL−1) đã được chọn để tinh chế và phân tách thêm. Phân đoạn F4C thu được từ bước tinh chế thứ hai của F4 cho thấy hoạt động ức chế ACE mạnh (IC50 = 36 μg.mL−1) cũng như hoạt động quét gốc tự do (IC50 = 3.3 μg.mL−1). Kết quả của nghiên cứu này gợi ý rằng casein lạc đà nguyên chất có thể được coi là một nguồn tiềm năng cho việc sản xuất các peptide với hoạt động ức chế ACE và hoạt động chống oxy hóa.

Từ khóa

#casein lạc đà #proteinase K #hoạt động ức chế ACE #peptide sinh học #hoạt động quét gốc tự do

Tài liệu tham khảo

Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci 81:3131–3138 Ali AA, Alyan AA, Bahobail AS (2013) Effect of fermented camel milk and cow milk containing (bifidobacteria) enriched diet in rats fed on cholesterol level. Agric Sci Res J 3:342–346 Asoodeh A, Yazdi MM, Chamani J (2012) Purification and characterisation of angiotensin I converting enzyme inhibitory peptides from lysozyme hydrolysates. Food Chem 131:291–295 Cheung H-S, Wang F-l, Ondetti MA, Sabo EF, Cushman DW (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J Biol Chem 255:401–407 Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227 Clare D, Swaisgood H (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195 Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album limber. Eur J Biochem 47:91–97 Gorban A, Izzeldin OM (1997) Mineral content of camel milk and colostrum. J Dairy Res 64:471–474 Habib HM, Ibrahim WH, Schneider-Stock R, Hassan HM (2013) Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem 141:148–152 Hooper NM (1991) Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem 23:641–647 Jiang Z, Tian B, Brodkorb A, Huo G (2010) Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chem 123:779–786 Jrad Z et al (2014) Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Sci Technol 94:205–224 Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Design 13:829–843 Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, Moosavi-Movahedi AA (2013) The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int Dairy J 29:82–87 Otte J, Shalaby SM, Zakora M, Pripp AH, El-Shabrawy SA (2007) Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis. Int Dairy J 17:488–503 Quan S, Tsuda H, Miyamoto T (2008) Angiotensin I‐converting enzyme inhibitory peptides in skim milk fermented with Lactobacillus helveticus 130B4 from camel milk in Inner Mongolia, China. J Sci Food Agric 88:2688–2692 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237 Salami M et al (2010) Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. J Agric Food Chem 58:3297–3302 Salami M, Moosavi-Movahedi AA, Moosavi-Movahedi F, Ehsani MR, Yousefi R, Farhadi M, Niasari-Naslaji A, Saboury AA, Chobert JM, Haertlé T (2011) Biological activity of camel milk casein following enzymatic digestion. J Dairy Res 78:471–478 Shabo Y, Yagil R (2005) Etiology of autism and camel milk as therapy. Int J Disabil Hum Dev 4:67–70 Shalaby SM, Zakora M, Otte J (2006) Performance of two commonly used angiotensin-converting enzyme inhibition assays using FA-PGG and HHL as substrates. J Dairy Res 73:178–186 Skeggs LT, Kahn JR, Lentz K, Shumway NP (1957) The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J Exp Med 106:439–453 Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M, Kurokawa M (2011) Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol 11:1976–1983 Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J (2009) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58:587–593 Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension what is the clinical significance? Hypertension 44:248–252 Tovar-Pérez E, Guerrero-Legarreta I, Farrés-González A, Soriano-Santos J (2009) Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and globulin as obtained of amaranth grain. Food Chem 116:437–444 Vermeirssen V, Van Camp J, Verstraete W (2002) Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J Biochem Biophys Methods 51:75–87