A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro

Springer Science and Business Media LLC - Tập 339 Số 1-2 - Trang 329-340 - 2011
Crisanto Velázquez-Becerra1, Lourdes Macías‐Rodríguez2, José López‐Bucio1, Josué Altamirano-Hernández2, Idolina Flores-Cortez2, Eduardo Valencia-Cantero1
1Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
2Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209. doi: 10.1007/s11104-004-5047-x

Babana AH, Antoun H (2005) Biological system for improving the availability of tilemsi phosphate rock for wheat (Triticum aestivum L.) cultivated in Mali. Nutr Cycl Agroecosyst 72:147–157. doi: 10.1007/s10705-005-0241-7

Badri D, Vivanco J (2009) Regulation and function of root exudates. Plan Cell Environ 32:666–68. doi: 10.1111/j.1365-3040.2009.01926.x

Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P, Prosser JI (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl Environ Microbiol 63:2281–2286

Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102. doi: 10.1016/S0065-2113(08)60425-3

Brenic A, Winans S (2005) Detection of and response to signals involved in host-microbe interactions by plant associated bacteria. Microbiol Mol Biol Rev 69:155–195. doi: 10.1128/MMBR.69.1.155-194.2005

Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116. doi: 10.1126/science.1121357

Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The Rhizosphere. Wiley, Chichester, pp 11–34

Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi: 10.1016/j.phytochem.2006.07.021

Gao MM, Teplitski JB, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834. doi: 10.1094/MPMI.2003.16.9.827

Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. doi: 10.1016/j.femsle.2005.07.030

Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131:872–877. doi: 10.1104/pp.017004

Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. doi: 10.1016/j.soilbio.2004.08.030

Gray MK, Pearson JP, Downie JA, Boboye BE A, Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178:372–376

Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, Reyes de la Cruz H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis. doi: 10.1007/s13199-010-0066-2

Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012. doi: 10.1007/s00253-008-1760-3

Liu W, Wei M, Bingyu Z, Feng L (2008) Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Curr Res Bacteriol 1:28–34

López-Bucio J, Acevedo-Hernández G, Ramírez-Chávez E, Molina-Torres J, Herrera-Estrella L (2006) Novel signals for plant development. Curr Opin Plant Biol 9:523–9. doi: 10.1016/j.pbi.2006.07.002

López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217. doi: 10.1094/MPMI-20-2-0207

Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Nat Acad Sci USA 100:1444–1449. doi: 10.1073_pnas.262672599

Nilsson P, Olofsson A, Fagerlind M, Fagerström TE, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the AHL regulatory system in a model biofilm system: How many bacteria constitute a “quorum”? J Mol Biol 309:631–640. doi: 10.1006/jmbi.2001.4697

Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Pant Cell Environ 31:1497–1509. doi: 10.1111/j.1365-3040.2008.01863.x

Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi: 10.1128/AEM.68.8.3795-3801.2002

Persello-Cartieaux F, David P, Sarrobert C, Thibaud MC, Robaglia C, Nussaume L (2001) Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190–198. doi: 10.1007/s004250000384

Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: Molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199. doi: 10.1046/j.1365-3040.2003.00956.x

Russelle M (2001) Alfalfa Am Sci 89:252–259. doi: 10.1511/2001.3.252

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi: 10.1073/pnas.0730845100

Sanchez-Contreras M, Bauer WD, Gao M, Robinson JB, Downie A (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond Biol Sci 362:1149–1163. doi: 10.1098/rstb.2007.2041

Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648. doi: 10.1094/MPMI.2000.13.6.637

Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza LE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273, doi: 10.1007/s11104-007-9191-y

Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi: 10.1146/annurev.cellbio.21.012704.131001

Williams P, Winzer K, Chan WC, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Biol Sci 362:1119–1134. doi: 10.1098/rstb.2007.2039

Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H (2008) Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Nat Acad Sci USA 105:12164–12169, doi: 10.1073/pnas.0802518105

Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo S, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. doi: 10.1007/s00425-007-0530-2

Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. doi: 10.1111/j.1365-313X.2009.03803.x