A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection

Nature Medicine - Tập 16 Số 3 - Trang 334-338 - 2010
Wataru Akahata1, Zhiyong Yang2, Hanné Andersen3, Siyang Sun4, Heather A. Holdaway4, Wing‐Pui Kong2, Mark G. Lewis3, Stephen Higgs5, Michael G. Rossmann4, Srinivas S. Rao2, Gary J. Nabel2
1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland, USA.
2Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, USA
3BIOQUAL, Inc., Rockville, USA
4Department of Biological Sciences, Purdue University, West Lafayette, USA
5Department of Pathology, University of Texas Medical Branch, Galveston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Simon, F., Savini, H. & Parola, P. Chikungunya: a paradigm of emergence and globalization of vector-borne diseases. Med. Clin. North Am. 92, 1323–1343 (2008).

Powers, A.M. & Logue, C.H. Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. J. Gen. Virol. 88, 2363–2377 (2007).

Ross, R.W. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J. Hyg. (Lond.) 54, 177–191 (1956).

Staples, J.E., Breiman, R.F. & Powers, A.M. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis. 49, 942–948 (2009).

Tsetsarkin, K.A., Vanlandingham, D.L., McGee, C.E. & Higgs, S. A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).

Enserink, M. Entomology. A mosquito goes global. Science 320, 864–866 (2008).

Strauss, J.H. & Strauss, E.G. The alphaviruses: gene expression, replication and evolution. Microbiol. Rev. 58, 491–562 (1994).

Cheng, R.H. et al. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630 (1995).

Zhang, W. et al. Placement of the structural proteins in Sindbis virus. J. Virol. 76, 11645–11658 (2002).

Arankalle, V.A. et al. Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol. 88, 1967–1976 (2007).

Harrison, V.R., Binn, L.N. & Randall, R. Comparative immunogenicities of chikungunya vaccines prepared in avian and mammalian tissues. Am. J. Trop. Med. Hyg. 16, 786–791 (1967).

Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

Yang, Z.-Y. et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the Spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78, 5642–5650 (2004).

Yang, Z.-Y. et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity. Science 317, 825–828 (2007).

Sourisseau, M. et al. Characterization of reemerging Chikungunya virus. PLoS Pathog. 3, e89 (2007).

McClure, M.O., Sommerfelt, M.A., Marsh, M. & Weiss, R.A. The pH independence of mammalian retrovirus infection. J. Gen. Virol. 71, 767–773 (1990).

Eckels, K.H., Harrison, V.R. & Hetrick, F.M. Chikungunya virus vaccine prepared by Tween-ether extraction. Appl. Microbiol. 19, 321–325 (1970).

Pletnev, S.V. et al. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105, 127–136 (2001).

Caspar, D.L. & Klug, A., Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

Couderc, T. et al. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 4, e29 (2008).

Couderc, T. et al. Prophylaxis and therapy for Chikungunya virus infection. J. Infect. Dis. 200, 516–523 (2009).

Levitt, N.H. et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4, 157–162 (1986).

McClain, D.J. et al. Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J. Infect. Dis. 177, 634–641 (1998).

Edelman, R. et al. Phase II safety and immunogenicity study of live Chikungunya virus vaccine TSI-GSD-218. Am. J. Trop. Med. Hyg. 62, 681–685 (2000).

Harrison, V.R., Eckels, K.H., Bartelloni, P.J. & Hampton, C. Production and evaluation of a formalin-killed Chikungunya vaccine. J. Immunol. 107, 643–647 (1971).

Tiwari, M. et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 27, 2513–2522 (2009).

Wang, E. et al. Chimeric alphavirus vaccine candidates for Chikungunya. Vaccine 26, 5030–5039 (2008).

Muthumani, K. et al. Immunogenicity of novel consensus-based DNA vaccines against Chikungunya virus. Vaccine 26, 5128–5134 (2008).

Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines 6, 381–390 (2007).

Bachmann, M.F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).

Noad, R. & Roy, P. Virus-like particles as immunogens. Trends Microbiol. 11, 438–444 (2003).

Ludwig, C. & Wagner, R. Virus-like particles-universal molecular toolboxes. Curr. Opin. Biotechnol. 18, 537–545 (2007).

Akahata, W., Yang, Z.Y. & Nabel, G.J. Comparative immunogenicity of human immunodeficiency virus particles and corresponding polypeptides in a DNA vaccine. J. Virol. 79, 626–631 (2005).

Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).