A unified probabilistic framework for robust manifold learning and embedding

Qi Mao1, Li Wang2, Ivor W. Tsang3
1HERE North America, Chicago, USA
2Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, USA
3Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Belkin, M., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), NIPS (Vol. 14, pp. 585–591). Cambridge: MIT Press.

Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 7, 2399–2434.

Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician, 24(3), 179–195.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

Burges, C. J. C. (2009). Dimension reduction: A guided tour. FTML, 2(4), 275–365.

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5), 1190–1208.

Creighton, C. (2012). The molecular profile of luminal b breast cancer. Biologics, 15, 440.

Curtis, C., Shah, S. P., Chin, S., et al. (2012). The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.

Elhamifar, E., & Vidal, R. (2011). Sparse manifold clustering and embedding. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), NIPS (pp. 55–63). Granada, Spain: Granada Congress and Exhibition Centre.

Fukunaga, K. (2013). Introduction to statistical pattern recognition. New York: Academic press.

Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313.

Gupta, A. K., & Nagar, D. K. (1999). Matrix variate distributions (Vol. 104). Boca Raton: CRC Press.

Hastie, T., & Stuetzle, W. (1989). Principal curves. JASA, 84, 502–516.

Jebara, T. (2001). Discriminative, generative and imitative learning. Ph.D. thesis, Massachusetts Institute of Technology.

Jimenez, L. O., & Landgrebe, D. (1998). Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data. TSMC, 28(1), 39–54.

Jolliffe, J. T. (1986). Principal component analysis. Berlin: Springer.

Kégl, B., Krzyzak, A., Linder, T., & Zeger, K. (2000). Learning and design of principal curves. IEEE TPAMI, 22(3), 281–297.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.

Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with gaussian process latent variable models. JMLR, 6, 1783–1816.

Lawrence, N. D. (2012). A unifying probabilistic perspective for spectral dimensionality reduction: Insights and new models. JMLR, 13(1), 1609–1638.

Mao, Q., Tsang, I. W., Gao, S., & Wang, L. (2015). Generalized multiple kernel learning with data-dependent priors. IEEE TNNLS, 24(2), 248–261.

Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image library (coil-20). Technical Report CUCS-005-96.

Nie, F., Xu, D., Tsang, I. W., & Zhang, C. (2009). Spectral embedded clustering. In C. Boutilier (Ed.), IJCAI (pp. 1181–1186). Menlo Park, California: AAAI Press.

Nie, F., Xu, D., Tsang, I. W., & Zhang, C. (2010). Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. TIP, 19(7), 1921–1932.

Parker, J., Mullins, M., Cheang, M., et al. (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology, 27(8), 1160–1167.

Rasmussen, C. E. (2006). Gaussian processes for machine learning. Cambridge: The MIT Press.

Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. JMLR, 4, 119–155.

Schölkopf, B., Smola, A., & Muller, K. (1999). Kernel principal component analysis. In B. Schölkopf, A. J. Smola, & C. J. C. Burges (Eds.), Advances in Kernel methods–Support vector learning (pp. 327–352). Cambridge: MIT Press.

Smola, A. J., & Kondor, R. (2003). Kernels and regularization on graphs. In B. Schölkopf & M. K. Warmuth (Eds.), ICML (pp. 144–158). New York: Springer.

Song, L., Smola, A., Gretton, A., & Borgwardt, K. (2007). A dependence maximization view of clustering. In Z. Ghahramani (Ed.), ICML (pp. 815–822). New York: ACM.

Sun, Y., Yao, J., Nowak, N., & Goodison, S. (2014). Cancer progression modeling using static sample data. Genome Biology, 15(8), 440.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, 61(3), 611–622.

Tutuncu, R., Toh, K., & Todd, M. (2003). Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming, 95, 189–217.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1), 49–95.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. JMLR, 9(2579–2605), 85.

van der Maaten, L., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Tilburg University Technical Report, TiCC-TR 2009-005.

Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005). Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. In R. G. Cowell & Z. Ghahramani (Eds.) Proceedings of the 10th international workshop on artificial intelligence and statistics (pp. 381–388).

Weinberger, K. Q., & Saul, L. K. (2006). Unsupervised learning of image manifolds by semidefinite programming. IJCV, 70(1), 77–90.

Weinberger, K. Q., Sha, F., & Saul, L. K. (2004). Learning a kernel matrix for nonlinear dimensionality reduction. In C. E. Brodley (Ed.), ICML (p. 106). New York: ACM.

Zhu, J., & Xing, E. P. (2009). Maximum entropy discrimination markov networks. JMLR, 10, 2531–2569.