A tree-like Bayesian structure learning algorithm for small-sample datasets from complex biological model systems

Weiwei Yin1, Swetha Garimalla2, Alberto Moreno3, Mary R. Galinski3, Mark P. Styczynski4
1Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
2School of Biology, Georgia Institute of Technology, Atlanta, GA, USA,
3Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA, USA
4School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barrenas F, Palermo RE, Agricola B, Agy MB, Aicher L, Carter V, et al. Deep transcriptional sequencing of mucosal challenge compartment from rhesus macaques acutely infected with simian immunodeficiency virus implicates loss of cell adhesion preceding immune activation. J Virol. 2014;88:7962–72.

Peng X, Thierry-Mieg J, Thierry-Mieg D, Nishida A, Pipes L, Bozinoski M, et al. Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR). Nucleic Acids Res. 2015;43:D737–42.

Salinas JL, Kissinger JC, Jones DP, Galinski MR. Metabolomics in the fight against malaria. Mem Inst Oswaldo Cruz. 2014;109:589–97.

Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.

Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. Biosystems. 2009;96:86–103.

Styczynski MP, Stephanopoulos G. Overview of computational methods for the inference of gene regulatory networks. Comput Chem Eng. 2005;29:519–34.

Zuk O, Margel S, Domany E. On the Number of Samples Needed to Learn the Correct Structure of a Bayesian Network. in Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI2006) (Cambridge, MA, USA).

Yin W, Kissinger JC, Moreno A, Galinski MR, Styczynski MP. From genome-scale data to models of infectious disease: a Bayesian network-based strategy to drive model development. Math Biosci. 2015 in press. doi: 10.1016/j.mbs.2015.06.006

Young WC, Raftery AE, Yeung KY. Fast Bayesian inference for gene regulatory networks using ScanBMA. BMC Syst Biol. 2014;8:47.

Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601–20.

Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm. Mach Learn. 2006;65:31–78.

Chickering DM, Heckerman D, Meek C. Large-sample learning of Bayesian networks is NP-hard. J Mach Learn Res. 2004;5:1287–330.

Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classification and combining techniques. Artif Intell Rev. 2006;26:159–90.

Carvalho AM, Oliveira AL, Sagot MF. Efficient learning of Bayesian network classifiers - An extension to the TAN classifier. Ai 2007: Advances in Artificial Intelligence, Proceedings. 2007;4830: 16–25.

Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach Learn. 1997;29:131–63.

Lin X, Ma P, Li X, Jiang J, Xiao N, Yang F. A learning method of Bayesian network structure. In: Fuzzy Systems and Knowledge Discovery (FSKD), 9th International Conference on 666–70. Sichuan, China: IEEE; 2012.

Cooper GF, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach Learn. 1992;9:309–47.

Kuschner KW, Malyarenko DI, Cooke WE, Cazares LH, Semmes OJ, Tracy ER. A Bayesian network approach to feature selection in mass spectrometry data. BMC Bioinformatics. 2010;11:177.

Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al. Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun. 2013;81:1889–904.

Lee KJ, Yin W, Arafat D, Tang Y, Uppal K, Tran V, et al. Comparative transcriptomics and metabolomics in a rhesus macaque drug administration study. Front Cell Dev Biol. 2014;2:54.

Preininger M, Arafat D, Kim J, Nath AP, Idaghdour Y, Brigham KL, et al. Blood-informative transcripts define nine common axes of peripheral blood gene expression. PLoS Genet. 2013;9:e1003362.

Friedman N, Nachman I, Peer D. Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm. Uncertainty in Artificial Intelligence, Proceedings; 1999. 206–15.

Aliferis CF, Tsamardinos I, Statnikov AR, Brown LE. Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery Metmbs'03: Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences; 2003. 371–6.

Abu-Hakmeh KA. Assessing the use of voting methods to improve Bayesian network structure learning. Georgia Institute of Technology: Georgia; 2012.

Spirtes P, Glymour C, Meek C. Causation, Prediction, and Search. New York: Springer; 1993.

Cheng J, Greiner R, Kelly J, Bell D, Liu WR. Learning Bayesian networks from data: An information-theory based approach. Artif Intell. 2002;137:43–90.

Li J, Lenferink AE, Deng Y, Collins C, Cui Q, Purisima EO, et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun. 2010;1:34.

Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics. 2002;18 Suppl 2:S231–40.

Boyen X, Friedman N, Koller D. Discovering the hidden structure of complex dynamic systems Uncertainty in Artificial Intelligence, Proceedings; 1999. 91–100.

Ghahramani Z. Learning dynamic Bayesian networks. Adaptive Processing of Sequences and Data Structures. 1998;1387:168–97.

Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics. 2003;19:2271–82.